用户5908119008772
其次,对于孩子的这个问题,我们还得正确面对,帮助他找到原因,然后,一起想办法克服这个难题,提高解决问题的能力。那么,具体应该怎么做呢?
1、帮助孩子找到问题的根源,然后对症下药。到底是哪方面的能力弱导致的?是分析理解能力弱,还是列式计算的能力弱?一般情况下,大部分孩子都是由于理解力弱,读不懂题目造成的,可能有时并不是真的读不懂,而是孩子潜意识里不想懂,比如,孩子专注力差,看到大段文字害怕了,所以,并没有用心去读题审题。不管怎样,应该去培养孩子的阅读兴趣和能力,鼓励他多读书,增加阅读量。书读的多了,自然理解能力就好了,专注力也有了。
2、平时对于各类应用题要多收集整理,最好进行归类汇集。争取搞清楚各种典型应用题的数量关系式和解题思路。比如常考的几类:行程问题、工程问题、利润问题、和差倍分问题、年龄问题、数字问题、配套和分配问题、等积变形问题等。
3、想解好数学应用题,还应该培养一种能力,就是将这种文字的语言翻译转化成数学的式子,这种能力至关重要,所以在平时的做题过程中应该让孩子刻意练习。其次,就是应该引导孩子多思考,拓宽解题思路,争取一题多解。比如,除了会用算式解之外,还可以让他尝试着用方程去解,因为我们知道:上初中以后,几乎所有的应用题都是用方程去解的。
最后,作为家长不可急躁,综合能力的培养需要时间,我们一定要调整好心态,做好打持久战的准备,记住:我们要和孩子站在一起打败问题和困难!
毛老师数学课
应用题也是有结构和分类的,因为不知道楼主孩子是几年级,那就综合分析吧,基础应用题大致有20几类,都有特定的数量关系,目的不是去记数量关系,而是去融汇贯通,我是王老师,致力于小学数学的精品问答!我举一个简单的例子,爬楼梯问题,剪绳子问题,植树问题其实本质都是一类问题。从审题到分析,目的是找对数量关系列式解决问题。应用题很差,说明接触的题型范围小,平时练的少,今天分享小学基础应用题例题解析,供你参考!周末可以研究下,打好基础,用对方法,下一步就是拓展提升,举一反三了。难度要适合孩子,循序渐进。
小学应用题分享
一学堂王老师
谢谢!孩子数学应用题很差,该怎么办!
孩子的数学应用题很差,说明孩子对应用题分析不够,造成错误分析及误判。这与母科语文有极大的关系。
母课语文要学好,如果孩子语文学的好,对语诃及语句,分析到位,就能提高孩子的思考判断能力,对数学应用题就一目了然,增强孩子的判断力,思考力。会减少孩子的错判及误判。
数学应用题与语文的好坏有直接的联系,语文母科学的好,孩子对数学应用题的判断会更快,能够直接理解语意,快速作出判断,为答题赢的时间。
但什么也不是绝对的,都是相对的。
但对孩子在应用题上的判断,与语文对句子的判断是绝对的,只有提高孩子的思维判断能力,孩子的应用题就不会产生错判与误判。
总之,要想提高孩子对应用题的成绩,家长就要孩子多沟通,培养孩子对应用题的兴趣,只有孩子对应用题产生兴趣,孩子就会去思考它,分析它,有了兴趣,孩子的思维能力就有了动力。
家长都有望子成才的思想,会不顾一切给孩子找辅导班,这是不负责任的,孩子压力够大了,要给孩子一个好的学习环境,使孩子对学习产生兴趣和爱好,才是孩子提高成绩的基础!
开心_73258937
孩子做数学应用题的能力差,要提高,可以分短期和长期来看。
短期的,可以把数学应用题分题型归类,把同类型应用题放在一起,多重复,让孩子练,孩子见多了,做多了,分数就会有所提高。
这么做,基本上属于“哪里不会,补哪里”,只能救急,提高的程度也有限。
长期的,就要从根上补,要解决的其实是如何孩子阅读能力和理解能力。
题目能不能读懂?知不知道在考察哪个知识点?考试时间内能不能快速反应过来?这些必须靠扎实的语文基础来打底。
需要让孩子多识字,提高阅读理解能力,锻炼思维的灵活性。这些,需要花时间,要坚持,不是一天两天能改善的。但只要照这方向下苦功夫了,回报是惊人的。越往高年级,效果越明显。
尤其是现在教学改革,“大语文”几乎是大势所趋,语文能力越强,在各个学科的优势就越明显,家长和学生一定要重视。
喜欢我的回答,欢迎您动动手指关注我,谢谢!
小公主变形计
这13个解题思路可以给孩子看一下
1综合法
综合法一般是指在思维过程中把对象的各部分联系成一个整体。
从应用题的已知条件出发,运用已经学过的基本数量关系,选择两个相互关联的已知条件,求出一个新问题,再把求出的新问题与原来题中的已知条件合在一起,再求出另一个新问题,如此继续下去,直到求出所有的问题为止,这种思考方法就是综合法。
这种方法由因导果,利于表达应用题,简单理解为:“执因索果”。
例题
先锋公司计划修一条800米长的堤坝,开始每天修筑38米,14天后,由于施工需要,每天比原计划修筑速度加快,结果剩下的堤坝只用了4天就完成了任务,剩下的平均每天比原计划多修筑多少米?
思路分析表示如下:
(1) 根据每天修筑38米和修筑了14天,可以求出已经修筑了多少米堤坝
(2) 根据已经修了多少米堤坝和计划修筑800米堤坝,可以求出还剩下多少米没有修完。
(3) 根据剩下多少米没有修筑和剩下的4天修筑完,可以求出剩下的每天修筑多少米。
(4) 根据后4天每天可以修筑多少米和原来每天修筑38米,可以求出平均每天比原来多修筑多少米。
解 (800—38X14)÷4—38
=(800—532)÷4—38
=268÷4—38
=67—38
=29
答:剩下的每天比原来多修筑29米。
2分析法
分析法一般是指在思维过程中把整体分解为几个组成部分,从问题入手。
根据数量关系,找出解答这个问题需要的两个条件,然后把其中一个或两个未知条件作为要解决的问题,再找出解答这一个或两个问题所需要的条件,这样逐步递推,直到所找的条件在应用题中都是已知条件为止。这种方法简称“执果索因”。
例题
某农机厂制造一批拖拉机,原计划每月制造120台,要6个月完成。结果提前一个月完成,实际每月制造多少台?
条件:“计划每月制造120台,6个月完成。”“结果提前一个月完成”。所求问题:“实际每月制造多少台?”
分析数量间的关系。要求“实际每月造多少台?”首先要算出“这批拖拉机共多少台”和“实际几个月完成”。
分析思路:
关系式:
总台数÷实际完成时间=实际每月造的台数 120×6 6—1
然后,列式解答:120×6÷(6—1)=144台
3假设法
对于一些含有两个或两个以上未知数的应用题,直接使用题目地已知条件,往往很难解决。
这时可以先假设要求的两个或几个量相等,或者先假设要求的两个量或同一种量。然后再按题里的已知条件进行推算,推算的结果必然与假设的条件有差异或矛盾,进一步寻找产生差异或矛盾的原因,消除差异或矛盾,最后找到正确答案,这种解题方法叫做假设法。
例题:笼子里有鸡和兔共30只,总共有70条腿,问鸡和兔各有多少只?
分析:
如果假设全是鸡,则30只鸡的腿数应为 2×30 = 60(条),比题目中的条件少了 70 - 60 = 10(条),因为每只鸡比兔少2条腿,所以,少了10条腿就说明有 10÷2 = 5(只)兔,也可以假设全是兔,首先推算出鸡的只数。
解法一
假设笼中全是鸡,则30只鸡的脚数为:2×30=60(条)
比题中的条件少了: 70-60=10条
因为每只鸡比兔少了2条腿 所以,少的10条腿就说明有:10÷(4-2)=5(只)兔
鸡的只数为:30-5=25(只)
解法二
假设笼中全是兔,则30只兔的脚数应为:4×30 = 120(条),
比题中的条件多了 :120 - 70 = 50(条),
因为每只兔比鸡多2条腿,所以,多了50条腿就说明有:50÷2 = 25(只)鸡。
鸡:4×30-70÷2=25(只)
兔:30-25=5(只)
答:这个笼子里装有25只鸡,5只兔。
4倒推法
一道应用题中,如果给出了对未知量经过某些运算而得知的最后结果,在解题时就可以从这最后结果出发,运用四则运算中加与减、乘与除的互逆关系,从后向前推,一步步推算,最后得到所求的问题,这种思考方法叫做倒推法,也叫做还原法和逆推法。
这种思考问题的方法比较常用,有些应用题按顺向处理比较困难,而且会使计算非常复杂,而采用倒推法往往要容易或简单的多。
例题
一个数减24加上15,再乘8得432,求这个数?
思路分析:
解:我们可以从最后的结果432出发倒着推想。
最后是乘8得432,
如果不乘8,那应该是432÷8=54;
如果不加上15,应该是54-15=39;
如果不减去24,那应该是39+24=63。因此,这个数是63。
5消元法
在较复杂的应用题中,有的包含着两个或两个以上要求的量,解答时,先想法消去一个要求的量,再求出另一个量,然后求出消去的量。这种方法叫做消元法。
常见的消元法有“加减消元法”“代入消元法”“比较消元法”。
解题办法:利用条件简化法,设法将其中的一个未知量消去,先求出另一个未知量,进而求出消去的未知量。(等量代换、加减消元法、列表法)
消元法解题步骤:
分析题意
列关系式
以相加相减形式去掉一个未知数,再去求那个消去的未知数
例题
3双皮鞋和7双布鞋共值242元,一双皮鞋的钱数与5双布鞋的钱数相同。求每双皮鞋、布鞋各值多少钱?
解:因为1双皮鞋与5双布鞋的钱数相同,所以3双皮鞋的钱数与5×3=15(双)布鞋的钱数一样多。
这样可以认为242元可以买布鞋:
15+7=22(双)
每双布鞋的钱数是:
242÷22=11(元)
每双皮鞋的钱数是:
11×5=55(元)
6对应法
在解题时寻求并利用已知条件之间及已知条件与未知条件之间的某种对应关系或对应数量的变化情况,去寻找解题途径,这就是对应法。
解决这类问题的关键是要找到对应关系,有的对应关系没有直接给出,需要进一步的求解,有的时候还需要借助画图帮助理解,这样类型的题目可以培养学生发现数量关系式,从而使问题由复杂变简单的能力。
例题
某学校新收一批住校生,学校启用15间宿舍还有34人没住处,启用21 间宿舍后学生不但都住进去了,有一件宿舍还能再住进去2人,这批学生共有多少人?
分析:用15间宿舍——还有34人没处住
用21间宿舍——还能再住2人
分析:
21-15=6(间)
34+2=36(人)
36÷6=6(人)
21×6-2=124(人)
或15×6+34=124(人)
7图解法
图解法是应用线段或其他图形把题目中的已知条件和所求的问题表示出来,使问题具体、形象、易懂,数量关系显示清楚,从而得到解题的线索。
尤其是解分数、百分数应用题时,几乎必须借助线段图才能找准比较量和分率的对应关系,才能正确得解答。
例题
托尔斯泰是俄罗斯伟大作家,享年82岁。他在19世纪中度过的时间比在20世纪中度过的时间多62年。问托尔斯泰生于哪一年?去世于哪一年?(适于四年级程度)
分析:
从图18-5可看出,他在20世纪度过的时间是:
(82-62)÷2=20÷2=10(年)
由此看出,他死于1910年;
他出生的时间是:
1910-82=1828(年)
8演示法
对于那些不容易理解和分析数量关系的应用题, 利用身边现成的 东西,如铅笔、橡皮、小刀、文具盒等,进行演示,使应用题的内容 形象化,数量关系具体化,这种解题的方法叫做演示法。
例题
一根绳子正好围成一个边长为 5 分米的正方形。 如果用它围成长是 8 分米的长方形, 问其宽应当是多少分米?
思路分析:
对这道题一般同学都会用这样的方法解答:5×4÷2-8=2(分米)
然而这并不是最简捷的解法,要用更简捷的解法,我们可以做下 面的试验:
1.用一根细铁丝围成一个边长是 5 分米的正方形。
2.把正方形的细铁丝从 C 点断开。
3.把 ABC 那部分(或 CDA 部分)拉直,折出 8 分米长的一段 与另一段成 90° 的角。
此时会看到 8 分米长的这一段是长方形的长, 与 8 分米长的边成直角的那一段是长方形的宽。
到此,很容易得出,长方形的宽:5×2-8=2(分米)
9转化法
解应用题时,如果用一般的方法暂时解答不出来时,就要变换一种方法去思考,或改变思考的角度,把问题转换成一个与他有关的问题去思考,从而达到化难为易的目的,使问题得到解决。这种办法就是转换法。
例题
晶晶三天看完一本书,第一天看了全书的1/4,第二天看民余下的2/5,第二天比第一天多看了15页,这本书共有多少页?
解题思路:
先把这本书的总页数看成单位“1”,第一天看了全书的1/4,那么还剩下全书的(1-1/4)
第二天看的页数就是总页数的(1-1/4)×2/5=3/10
所以全书有:15÷(3/10-1/4)=300(页)
10类比法
类比法就是在求解一个问题的时候,运用已有的知识,经过联想一个其他类似的、熟悉的问题,用熟悉的方法来解答所需解答的问题。
例题
从时针指向3点整开始,经过多少分钟,分针正好与时针重合?
11代换法
代换法是解应用题常用的一种思维方式,在有些应用题中,要求两个或两个以上的未知量,可以先分析这些未知量之间的关系,根据他们之间的关系,用一种量代替另一种量,这种解题方法叫做代换法,用代换法解题时,先要分析两个量之间的关系,再进行等量代换。
例题
工地用5辆大车和4辆小车一次共运来水泥42.5吨,已知每辆大车比每辆小车多运4吨,每辆大车和每辆小车各运来水泥多少吨?
思路分析:
题目中有两个未知数,解答起来有一定困难。但运用替换方法,把4辆小车换成大车,题目的解答就变得比较容易:
设每辆小车都多运4吨,那么小车运的吨数就和大车同样多了(也就是将小车都转换为大车了)。
这时,4辆小车就会共增加运量4×4=16(吨)总共运的吨数就会增加到42.5+16=58.5(吨)。
这58.5吨便是(5+4)辆大车运的水泥数,所以,每辆大车运来的水泥便是58.5÷(5+4)=58.5÷9=6.5(吨)
每辆小车运来的水泥便是6.5-4=2.5(吨)
12参数法
对于数量关系比较复杂或已知条件较少的应用题,列方程时,除了应设的未知数外,还需要增设一些“设而不求”的参数,便于把用自然语言描述的数量关系翻译成代数语言,以便沟通数量关系,为列方程创造条件。
设数法是解答小学数学应用题的一种常用的方法。有些较复杂的应用题,粗看似乎条件不足。但是,只要根据需要,假设一个适当的数据作为已知条件,便可使解题途径变得非常顺畅。
例题
牧场上长满牧草,每天牧草都匀速生长,这片牧草可供 10 头牛吃 20 天,可供 15 头牛吃 10 天,那么,可供 25 头牛吃几天?
思路分析:
解:设1头牛1天吃的草为“1“,由条件可知,前后两次青草的问题相差为10×20-15×10=50
为什么会多出这50呢?这是第二次比第一次多的那(20-10)=10天生长出来的,所以每天生长的青草为50÷10=5.
现从另一个角度去理解,这个牧场每天生长的青草正好可以满足5头牛吃
由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(10-5)×20=100.
那么:第一次吃草量20×10=200,第二次吃草量,15×10=150;
每天生长草量50÷10=5.
原有草量(10-5)×20=100或200-5×20=100.
25头牛分两组,5头去吃生长的草,其余20头去吃原有的草那么100÷20=5(天)
答:可供25头牛吃5天。
13枚举法
根据问题的要求,按照一定的顺序一一列举问题的答案,或者把问题分为不重复、不遗漏的有限种情况,通过一一列出这些情况加以解决,最终达到解决整个问题的目的,这种方法叫做枚举法。
例题
印刷工人在排印一本书的页码时共用1890个数码,这本书有多少页?
思路分析:
1.数码一共有10个:0、1、2……8、9。0不能用于表示页码,所以页码是一位数的页有9页,用数码9个。
2.页码是两位数的从第10页到第99页。因为99-9=90,所以,页码是两位数的页有90页,用数码:2×90=180(个)
3.还剩下的数码:1890-9-180=1701(个)
4.因为页码是三位数的页,每页用3个数码,100页到999页,999-99=900,而剩下的1701个数码除以3时,商不足600,即商小于900。所以页码最高是3位数,不必考虑是4位数了。往下要看1701个数码可以排多少页。1701÷3=567(页)
5.这本书的页数: 9+90+567=666(页)
(注:本文部分素材选自网络)
极客数学帮
对于小学阶段的学生,应用题做不好,往往是以下几方面原因。
1.读题不仔细。不会找关键词句。所以在平时训练时,要孩子多读几遍题,划出题目中的关键词句。比如单位之间的换算等。
2.缺少解决问题的策略。当条件比较多时,要让孩子养成整理条件的习惯,比如画图,列表。整理之后,可以从问题出发,想解决问题的数量关系式,再根据数量关系式找条件。也可以从条件出发,找到关联条件,思考先算什么再算什么。
3.没有养成整理典型习题的习惯。在解决问题后,要思考这个问题考的是什么知识点,再找几题类似题进行巩固。把这一类w题型的相同点和不同点进行整理、分析。
薄荷糖165873351
做数学应用题,最主要的是审题,这是最关键的第一步,如果审题不清,或者不知道怎么去审题,自然就不会做数学应用题。学会审题的关键是语文,语文是一切学科的基础,学好语文是关键。
学会审题之后,要明白一些基本的数学关系,例如,最基本的的减数,被减数,差之间的关系,更复杂的函数关系等,熟知这些基本关系(也是数学的基本工具),找到切入点,对号入座,找到题目中数据的关系链,也就知道该怎么解答这道题目了。
孩子年龄再大一些,可能会学习一些几何,几何最主要的是学会画图,图形结合做题。应用题可以学会画题干中的关系图,这样做题更清晰。
济南朴新
孩子做应用题存在问题是因为理解能力出现就一些问题。
问题不是很大。
其实语文,比如阅读很重要,语文是所有基础学科的基础。
加强孩子习惯的培养很重要。
一定要让孩子多读书,读好书,深度训练。
土邦哥
其实最简单的又不伤害孩子未来学习力的方式就是暂时不要时时刻刻提醒孩子应用题你不会做,这一步做不到,其他所有的努力都会事倍功半!刷题是最无效的方法,因为只有学霸才会用这方法来提升解题速度!家长没事就带孩子去实践各种生活情景,组织孩子亲自去采办各种生活用品,记得不要去讲什么应用题,就是简单的去做,把方法交给孩子,当孩子开始为自己的生活思考了,什么应用题都是浮云!慢慢的复杂的采购也能完成时,就可以和孩子讨论那些方式可以更加合适,这里一定也是没有标准答案,估计他去思考去验证,对错对老师很重要,对孩子来说最不重要,要相信孩子的创造力是老师的几百倍,孩子长大了自然会去修正自己的想法,而不是被老师限制在所谓的正确范围内!另,应用题不会就去把应用题编程作为或小练笔,既锻炼文笔又锻炼逻辑思维!
但不管怎么做都有一个前提,一个害怕麻烦又躲懒的家长,很难去帮助孩子面对这个人生考题!
追梦教育和亲子咨询
我是前前数学老师,兼数学博士他爹。孩子数学应用题很差,解决的办法,最好是家长自己花一个月先统统复习一遍。假定家长是高中毕业的。你一个月拿不下来,你让孩子怎么学得会?你复习好以后,双管齐下地辅导孩子!一方面随他上课进度,别再欠新账,另一方面,系统滴重做以前的习题,试卷,可以用一本正规的教辅材料。应用题的基础不弄实在了,高中数学是没法读好的!因为应用题是兼顾阅读理解,逻辑推理,准确表达与数形结合及计算等多方面训练的载体。