From Zero To Hero

SPI,全称为 Serial Peripheral Interface(串行外设接口),是一种用于短距离通信的同步串行通信接口,主要应用在嵌入式系统。

这是第二篇分享,《STM32学习笔记》之SPI通信常见问题分析

SPI的应用场合很广,显示模组、时钟芯片、存储芯片、温度传感器等众多器件都有使用SPI接口通信。这些器件通常作为从设备,STM32作为主设备来控制它们。


STM32 SPI基础内容

绝大部分STM32芯片都有多个SPI外设,它可与外部SPI器件进行半双工/全双工同步串行通信。


1. SPI特性

  • 三条线全双工、双线单工同步传输
  • 支持 8 位或 16 位传输帧格式选择
  • 支持主模式或从模式操作
  • 可编程的时钟极性和相位
  • 支持 MSB 或 LSB 数据顺序
  • 支持DMA收发数据

更多特性请查阅《STM32参考手册》。


2. 引脚描述

MISO:主输入/从输出数据;

MOSI:主输出/从输入数据;

SCK:时钟(主输出,从输入时钟);

NSS:从器件选择,可理解片选信号;

From Zero To Hero | SPI通信异常分析

3. SPI时序

SPI的时序中有两个参数需要注意,那就是时钟相位和时钟极性。在STM32中,SPI时序由CPOL 和 CPHA 这两位来决定。

通过软件配置这两个参数,可分为四种时序关系,如下图:

From Zero To Hero | SPI通信异常分析

4. 数据帧格式

串行同行数据传输分为 MSB 和 LSB,也就是最高有效位在前,还是最低有效位在前。(注:最左边的比特位即为最高有效位)。

比如传输一个字节:0x95(1001 0101)。

From Zero To Hero | SPI通信异常分析

如果按照MSB(高位在前),则发送顺序:1001 0101。

如果按照LSB(低位在前),则发送顺序反过来:1010 1001。


STM32 SPI参数配置

通常STM32的SPI作为主机连接外部从机,要与从机建立正常通信,就必须与从机的参数匹配才行。


这里以【STM32作为SPI主机读写SPI Flash】为例,主要配置参数:双向全双工、主机模式、8位数据、MSB等。


1. 标准外设库配置

<code>SPI_InitTypeDef  SPI_InitStructure;

SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; //双向全双工
SPI_InitStructure.SPI_Mode = SPI_Mode_Master; //主机模式
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; //8位数据
SPI_InitStructure.SPI_CPOL = SPI_CPOL_High; //时钟极性:空闲为高
SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge; //时钟相位:第2个时钟沿捕获
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; //软件控制NSS信号
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4; //波特率预分频值为4
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; //数据传输从 MSB 位开始
SPI_InitStructure.SPI_CRCPolynomial = 7;


SPI_Init(SPI1, &SPI_InitStructure);/<code>

2. STM32CubeMX配置

From Zero To Hero | SPI通信异常分析

首先选择全双工主机模式,然后再逐步配置下面参数。这里的波特率时钟灰色不可配置,由你系统时钟和分频时钟决定。

这些配置参数比较容易理解(英文清晰明了),若不懂可针对性查阅参考手册。


STM32 SPI常见问题

虽说SPI相对比较简单,但在实际应用过程中还是会存在一些奇怪的问题,下面通过案例来分析SPI常见的一些问题。


问题一:NSS片选问题

有工程师使用硬件NSS控制从机,以为NSS信号是自动控制,导致操作从设备失败。

分析原因:STM32 SPI的NSS信号为片选信号,可“使能”为硬件控制(参看上面参数配置)。

但在应用中同样需要软件操作才能控制NSS信号(高低),比如:

<code>SPI_NSSInternalSoftwareConfig(SPI1, SPI_NSSInternalSoft_Set);/<code>

解决办法:按照通信时序,控制NSS信号高低(通常低有效)。


问题二:SPI引脚复用功能问题

STM32的SPI是一种复用功能,之前使用标准外设库的工程师容易遗漏复用功能的配置导致SPI不能使用。

分析原因:SPI有些引脚对应的是特殊功能的引脚,比如:PB3(MISO)对应的是 JTDO,如果不配置则默认这个引脚的功能就是 JTDO的功能。

以前经常存在这种问题,但现在通过工具STM32CubeMX配置时自动配置了复用功能。

解决办法:参考官方提供在初始化代码中配置复用功能(同时,推荐使用HAL库)。

<code>GPIO_PinAFConfig(GPIOA, GPIO_PinSource5, GPIO_AF_SPI1);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource6, GPIO_AF_SPI1);/<code>


问题三:时钟速率过高问题

有工程师购买一个通信为SPI的模块,最高通信速率8MB/s,他使用10.5MB/s通信速率也能用,但偶尔会出现通信异常。

分析原因:一个芯片标称的最高速率其实是相对保守的值,在条件比较好的情况下超过了最高值也能用,但不能保证稳定性。

STM32 SPI的时钟频率由系统时钟和分频决定,有的工程师没有深入理解这些参数,发现能用就不管了。

如上章节中的21MB/s,如果修改系统时钟,其实这个值会发生相应变化

解决办法:最简单的办法就是修改分频值。同时,如果环境恶劣,建议使用屏蔽线。(在保证整个产品系统实时性的同时,尽量降低通信速率)


问题四:时钟相位问题

有不少工程师在调试SPI时会遇到数据“移位”的问题,数据能收发为什么会出现这种问题呢?

分析原因:SPI通信时钟由主机提供,本身上电时(主从)各自的信号就不稳定,如果从机时钟相位也不匹配,就会因为时钟引起数据移位,或者异常的情况。

解决办法:软件上匹配SPI主从设备的时钟相位,使用通信协议,CRC、 checksum校验等。


分享到:


相關文章: