Python 的图像处理PIL库这么强大?也许这是最详细的文章了~

Python学习交流群:666468218,群内每天分享干货,包括最新的python企业案例学习资料和零基础入门教程,欢迎各位小伙伴入群学习交流

在数字图像处理中,针对不同的图像格式有其特定的处理算法。所以,在做图像处理之前,我们需要考虑清楚自己要基于哪种格式的图像进行算法设计及其实现。本文基于这个需求,使用python中的图像处理库PIL来实现不同图像格式的转换。

对于彩色图像,不管其图像格式是PNG,还是BMP,或者JPG,在PIL中,使用Image模块的open()函数打开后,返回的图像对象的模式都是“RGB”。而对于灰度图像,不管其图像格式是PNG,还是BMP,或者JPG,打开后,其模式为“L”。

通过之前对Image模块的介绍,对于PNG、BMP和JPG彩色图像格式之间的互相转换都可以通过Image模块的open()和save()函数来完成。具体说就是,在打开这些图像时,PIL会将它们解码为三通道的“RGB”图像。用户可以基于这个“RGB”图像,对其进行处理。处理完毕,使用函数save(),可以将处理结果保存成PNG、BMP和JPG中任何格式。这样也就完成了几种格式之间的转换。同理,其他格式的彩色图像也可以通过这种方式完成转换。当然,对于不同格式的灰度图像,也可通过类似途径完成,只是PIL解码后是模式为“L”的图像。

这里,我想详细介绍一下Image模块的convert()函数,用于不同模式图像之间的转换。

Convert()函数有三种形式的定义,它们定义形式如下:

  • im.convert(mode) ⇒ image

  • im.convert(“P”, **options) ⇒ image

  • im.convert(mode, matrix) ⇒ image

使用不同的参数,将当前的图像转换为新的模式,并产生新的图像作为返回值。

通过 我们知道PIL中有九种不同模式。分别为1,L,P,RGB,RGBA,CMYK,YCbCr,I,F。

模式“RGB”转换为其他不同模式

模式“1”

模式“1”为二值图像,非黑即白。但是它每个像素用8个bit表示,0表示黑,255表示白。下面我们将lena图像转换为“1”图像。

代码

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~

模式“L”

模式“L”为灰色图像,它的每个像素用8个bit表示,0表示黑,255表示白,其他数字表示不同的灰度。在PIL中,从模式“RGB”转换为“L”模式是按照下面的公式转换的:

L = R * 299/1000 + G * 587/1000+ B * 114/1000

代码

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~

对于第一个像素点,原始图像lena为(69, 106, 125 ),其转换为灰色值为:

197 *299/1000 + 111 * 587/1000 + 125 * 114/1000 = 97.103,PIL中只取了整数部分,即为97。

模式“P”

模式“P”为8位彩色图像,它的每个像素用8个bit表示,其对应的彩色值是按照调色板查询出来的。

下面我们使用默认的调色板将图像转换为“P”图像。

代码

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~

模式“RGBA”

模式“RGBA”为32位彩色图像,它的每个像素用32个bit表示,其中24bit表示红色、绿色和蓝色三个通道,另外8bit表示alpha通道,即透明通道。

下面我们将模式为“RGB”的lena图像转换为“RGBA”图像。

代码

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~

从实例中可以看到,使用当前这个方式将“RGB”图像转为“RGBA”图像时,alpha通道全部设置为255,即完全不透明。

模式“CMYK”

模式“CMYK”为32位彩色图像,它的每个像素用32个bit表示。模式“CMYK”就是印刷四分色模式,它是彩色印刷时采用的一种套色模式,利用色料的三原色混色原理,加上黑色油墨,共计四种颜色混合叠加,形成所谓“全彩印刷”。

四种标准颜色是:C:Cyan =青色,又称为‘天蓝色’或是‘湛蓝’M:Magenta =品红色,又称为‘洋红色’;Y:Yellow =黄色;K:Key Plate(blacK) =定位套版色(黑色)。

下面我们将模式为“RGB”的lena图像转换为“CMYK”图像。

代码

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~

从实例中可以得知PIL中“RGB”转换为“CMYK”的公式如下:

C = 255 - R

M = 255 - G

Y = 255 - B

K = 0

由于该转换公式比较简单,转换后的图像颜色有些失真。

模式“YCbCr”

模式“YCbCr”为24位彩色图像,它的每个像素用24个bit表示。YCbCr其中Y是指亮度分量,Cb指蓝色色度分量,而Cr指红色色度分量。人的肉眼对视频的Y分量更敏感,因此在通过对色度分量进行子采样来减少色度分量后,肉眼将察觉不到的图像质量的变化。

模式“RGB”转换为“YCbCr”的公式如下:

Y= 0.257*R+0.504*G+0.098*B+16

Cb = -0.148*R-0.291*G+0.439*B+128

Cr = 0.439*R-0.368*G-0.071*B+128

下面我们将模式为“RGB”的lena图像转换为“YCbCr”图像。

代码

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~

按照公式

Y =0.257*69+0.564*106+0.098*125+16= 105.767

Cb=-0.148*69-0.291*106+0.439*125+128=162.240

Cr = 0.439*69-0.368*106-0.071*125+128 = 110.408

由此可见,PIL中并非按照这个公式进行“RGB”到“YCbCr”的转换。

模式“I”

模式“I”为32位整型灰色图像,它的每个像素用32个bit表示,0表示黑,255表示白,(0,255)之间的数字表示不同的灰度。在PIL中,从模式“RGB”转换为“I”模式是按照下面的公式转换的:

I = R * 299/1000 + G * 587/1000 + B * 114/1000

下面我们将模式为“RGB”的图像转换为“I”图像。

代码

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~

从实验的结果看,模式“I”与模式“L”的结果是完全一样,只是模式“L”的像素是8bit,而模式“I”的像素是32bit。

模式“F”

模式“F”为32位浮点灰色图像,它的每个像素用32个bit表示,0表示黑,255表示白,(0,255)之间的数字表示不同的灰度。在PIL中,从模式“RGB”转换为“F”模式是按照下面的公式转换的:

F = R * 299/1000+ G * 587/1000 + B * 114/1000

下面我们将模式为“RGB”的lena图像转换为“F”图像。

代码

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~

模式“F”与模式“L”的转换公式是一样的,都是RGB转换为灰色值的公式,但模式“F”会保留小数部分,如实验中的数据


其他不同模式转换为“RGB”模式

Python学习交流群:666468218,群内每天分享干货,包括最新的python企业案例学习资料和零基础入门教程,欢迎各位小伙伴入群学习交流

模式“RGB”为24位彩色图像,它的每个像素用24个bit表示,分别表示红色、绿色和蓝色三个通道。

在PIL中,对于彩色图像,open后都会转换为“RGB”模式,然后该模式可以转换为其他模式,比如“1”、“L”、“P”和“RGBA”,这几种模式也可以转换为“RGB”模式。

模式“1”转换为模式“RGB”

模式“RGB”转换为模式“1”以后,像素点变成黑白两种点,要么是0,要么是255。而从模式“1”转换成“RGB”时,“RGB”的三个通道都是模式“1”的像素值的拷贝。

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~

模式“L”转换为模式“RGB”

模式“RGB”转换为模式“L”以后,像素值为[0,255]之间的某个数值。而从模式“L”转换成“RGB”时,“RGB”的三个通道都是模式“L”的像素值的拷贝。

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~

嘿嘿 日常翻车~

模式“P”转换为模式“RGB”

模式“RGB”转换为模式“P”以后,像素值为[0,255]之间的某个数值,但它为调色板的索引值,其最终还是彩色图像。从模式“P”转换成“RGB”时,“RGB”的三个通道会变成模式“P”的像素值索引的彩色值。

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~

模式“RGBA”转换为模式“RGB”

模式“RGB”转换为模式“RGBA”以后,图像从三通道变成了四通道,其R、G、B三个通道的数值没有变化,新增的alpha通道均为255,表示不透明。从模式“RGBA”转换成“RGB”时,“RGB”的三个通道又变回原来的数值。

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~

模式“CMYK”转换为模式“RGB”

模式“RGB”转换为模式“CMYK”以后,图像从三通道变成了四通道,其C、M、Y三个通道的数值是通过之前的公式计算得到,K通道被直接赋值为0。

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~

从模式“CMYK”转换成“RGB”时,“RGB”的三个通道又变回原来的数值,这是无损的转换。

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~

模式“YCbCr”转换为模式“RGB”

模式“RGB”转换为模式“YCbCr”,通常都是使用下面的公式计算,但PIL中并没有严格按照这个公式进行转换。

Y= 0.257*R+0.564*G+0.098*B+16

Cb =-0.148*R-0.291*G+0.439*B+128

Cr = 0.439*R-0.368*G-0.071*B+128

从模式“YCbCr”转换成“RGB”时,通常是按照下面的公式计算,但PIL中并没有严格按照这个公式进行转换。

R= 1.164*(Y-16)+1.596*(Cr-128)

G = 1.164*(Y-16)-0.392*(Cb-128)-0.813*(Cr-128)

B = 1.164*(Y-16)+2.017*(Cb-128)

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~

模式“I”转换为模式“RGB”

模式“RGB”转换为模式“I”,将三通道变成了单通道,使用下面的公式计算获得像素值:

I = R * 299/1000+ G * 587/1000 + B * 114/1000

从模式“I”转换成“RGB”时,“RGB”的三个通道都是模式“I”的像素值的拷贝。

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~

模式“F”转换为模式“RGB”

模式“RGB”转换为模式“F”,将彩色图像变成了32位浮点灰色图像。在PIL中,从模式“RGB”转换为“F”模式是按照下面的公式转换的:

F = R * 299/1000+ G * 587/1000 + B * 114/1000

从模式“F”转换成“RGB”时,“RGB”的三个通道都是模式“F”的像素值整数部分的拷贝。

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~


调色板图像的转换

在PIL中,将“RGB”图像转换为“P”模式图像时,有对应的convert()函数定义,如下:

im.convert(“P”,**options) ⇒ image

这个定义将模式固定为“P”,后面可以带几个可选参数。它们分别为:dither,palette和colors

  • 参数dither:用于控制颜色抖动。默认是FLOYDSTEINBERG,不使能该功能,则赋值为NONE。

  • 参数palette:用于控制调色板的产生。默认是WEB,这是标准的216色的“web palette”。要使用优化的调色板,则赋值为ADAPTIVE。

  • 参数colors:用于控制调色板颜色数目。当参数palette为ADAPTIVE时,colors数值表示调色板的颜色数目。默认是最大值,即256种颜色。

使用默认值,将“RGB”转换为“P”模式图像后如下:

  • 参数dither默认为FLOYDSTEINBERG;如果不开启颜色抖动功能,则赋值为NONE。

  • 参数palette默认是WEB。要使用优化的调色板,则赋值为ADAPTIVE。

  • 当参数palette为ADAPTIVE时,colors数值表示调色板的颜色数目。默认值为256。

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~


带矩阵的模式转换

模式转换函数convert()的第三种定义如下:

im.convert(mode,matrix) ⇒ image

这种定义只适合将一个“RGB”图像转换为“L”或者“RGB”图像,不能转换为其他模式的图像。变量matrix为4或者16元组。

例子:下面的例子将一个RGB图像(根据ITU-R709线性校准,使用D65亮度)转换到CIE XYZ颜色空间:

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~

PIL中对图像格式及模式的转换,相对都是非常简洁。用户可以根据自己的需求,将图像转换为目标模式,进而进行各种处理。对于不同的图像处理目的,需要选择在哪种模式上设计图像算法,设计什么样的算法,这个是一个极为关键的问题。希望之后的学习中,能够有比较深刻的认识。

感谢各位大大看完,如果说想要代码以及笔记的请私信或者在下方评论“源码”即可获取

Python 的图像处理PIL库这么强大?也许这是最详细的文章了~


分享到:


相關文章: