電氣百科:萬用表、高壓斷路器、高壓變頻器、變壓器、變頻器知識

電氣百科:萬用表、高壓斷路器、高壓變頻器、變壓器、變頻器知識

電氣百科:萬用表的使用技巧

電氣百科:萬用表、高壓斷路器、高壓變頻器、變壓器、變頻器知識

1、測喇叭、耳機、動圈式話筒:用R×1Ω檔,任一表筆接一端,另一表筆點觸另一端,正常時會發出清脆響量的“噠”聲。如果不響,則是線圈斷了,如果響聲小而尖,則是有擦圈問題,也不能用。

2、測電容:用電阻檔,根據電容容量選擇適當的量程,並注意測量時對於電解電容黑表筆要接電容正極。①、估測微波法級電容容量的大小:可憑經驗或參照相同容量的標準電容,根據指針擺動的最大幅度來判定。所參照的電容不必耐壓值也一樣,只要容量相同即可,例如估測一個100μF/250V的電容可用一個100μF/25V的電容來參照,只要它們指針擺動最大幅度一樣,即可斷定容量一樣。②、估測皮法級電容容量大小:要用R×10kΩ檔,但只能測到1000pF以上的電容。對1000pF或稍大一點的電容,只要錶針稍有擺動,即可認為容量夠了。③、測電容是否漏電:對一千微法以上的電容,可先用R×10Ω檔將其快速充電,並初步估測電容容量,然後改到R×1kΩ檔繼續測一會兒,這時指針不應回返,而應停在或十分接近∞處,否則就是有漏電現象。對一些幾十微法以下的定時或振盪電容(比如彩電開關電源的振盪電容),對其漏電特性要求非常高,只要稍有漏電就不能用,這時可在R×1kΩ檔充完電後再改用R×10kΩ檔繼續測量,同樣錶針應停在∞處而不應回返。

3、在路測二極管、三極管、穩壓管好壞:因為在實際電路中,三極管的偏置電阻或二極管、穩壓管的周邊電阻一般都比較大,大都在幾百幾千歐姆以上,這樣,我們就可以用萬用表的R×10Ω或R×1Ω檔來在路測量PN結的好壞。在路測量時,用R×10Ω檔測PN結應有較明顯的正反向特性(如果正反向電阻相差不太明顯,可改用R×1Ω檔來測),一般正向電阻在R×10Ω檔測時錶針應指示在200Ω左右,在R×1Ω檔測時錶針應指示在30Ω左右(根據不同表型可能略有出入)。如果測量結果正向阻值太大或反向阻值太小,都說明這個PN結有問題,這個管子也就有問題了。這種方法對於維修時特別有效,可以非常快速地找出壞管,甚至可以測出尚未完全壞掉但特性變壞的管子。比如當你用小阻值檔測量某個PN結正向電阻過大,如果你把它焊下來用常用的R×1kΩ檔再測,可能還是正常的,其實這個管子的特性已經變壞了,不能正常工作或不穩定了。

4、測電阻:重要的是要選好量程,當指針指示於1/3~2/3滿量程時測量精度最高,讀數最準確。要注意的是,在用R×10k電阻檔測兆歐級的大阻值電阻時,不可將手指捏在電阻兩端,這樣人體電阻會使測量結果偏小。

5、測穩壓二極管:我們通常所用到的穩壓管的穩壓值一般都大於1.5V,而指針表的R×1k以下的電阻檔是用表內的1.5V電池供電的,這樣,用R×1k以下的電阻檔測量穩壓管就如同測二極管一樣,具有完全的單向導電性。但指針表的R×10k檔是用9V或15V電池供電的,在用R×10k測穩壓值小於9V或15V的穩壓管時,反向阻值就不會是∞,而是有一定阻值,但這個阻值還是要大大高於穩壓管的正向阻值的。如此,我們就可以初步估測出穩壓管的好壞。但是,好的穩壓管還要有個準確的穩壓值,業餘條件下怎麼估測出這個穩壓值呢?不難,再去找一塊指針表來就可以了。方法是:先將一塊表置於R×10k檔,其黑、紅表筆分別接在穩壓管的陰極和陽極,這時就模擬出穩壓管的實際工作狀態,再取另一塊表置於電壓檔V×10V或V×50V(根據穩壓值)上,將紅、黑表筆分別搭接到剛才那塊表的的黑、紅表筆上,這時測出的電壓值就基本上是這個穩壓管的穩壓值。說“基本上”,是因為第一塊表對穩壓管的偏置電流相對正常使用時的偏置電流稍小些,所以測出的穩壓值會稍偏大一點,但基本相差不大。這個方法只可估測穩壓值小於指針表高壓電池電壓的穩壓管。如果穩壓管的穩壓值太高,就只能用外加電源的方法來測量了(這樣看來,我們在選用指針表時,選用高壓電池電壓為15V的要比9V的更適用些)。

6、測三極管:通常我們要用R×1kΩ檔,不管是NPN管還是PNP管,不管是小功率、中功率、大功率管,測其be結cb結都應呈現與二極管完全相同的單向導電性,反向電阻無窮大,其正向電阻大約在10K左右。為進一步估測管子特性的好壞,必要時還應變換電阻檔位進行多次測量,方法是:置R×10Ω檔測PN結正向導通電阻都在大約200Ω左右;置R×1Ω檔測PN結正向導通電阻都在大約30Ω左右,(以上為47型表測得數據,其它型號表大概略有不同,可多試測幾個好管總結一下,做到心中有數)如果讀數偏大太多,可以斷定管子的特性不好。還可將表置於R×10kΩ再測,耐壓再低的管子(基本上三極管的耐壓都在30V以上),其cb結反向電阻也應在∞,但其be結的反向電阻可能會有些,錶針會稍有偏轉(一般不會超過滿量程的1/3,根據管子的耐壓不同而不同)。同樣,在用R×10kΩ檔測ec間(對NPN管)或ce間(對PNP管)的電阻時,錶針可能略有偏轉,但這不表示管子是壞的。但在用R×1kΩ以下檔測ce或ec間電阻時,表頭指示應為無窮大,否則管子就是有問題。應該說明一點的是,以上測量是針對硅管而言的,對鍺管不適用。不過現在鍺管也很少見了。另外,所說的“反向”是針對PN結而言,對NPN管和PNP管方向實際上是不同的。

現在常見的三極管大部分是塑封的,如何準確判斷三極管的三隻引腳哪個是b、c、e?三極管的b極很容易測出來,但怎麼斷定哪個是c哪個是e?這裡推薦三種方法:第一種方法:對於有測三極管hFE插孔的指針表,先測出b極後,將三極管隨意插到插孔中去(當然b極是可以插準確的),測一下hFE值,然後再將管子倒過來再測一遍,測得hFE值比較大的一次,各管腳插入的位置是正確的。第二種方法:對無hFE測量插孔的表,或管子太大不方便插入插孔的,可以用這種方法:對NPN管,先測出b極(管子是NPN還是PNP以及其b腳都很容易測出,是吧?),將表置於R×1kΩ檔,將紅表筆接假設的e極(注意拿紅表筆的手不要碰到表筆尖或管腳),黑表筆接假設的c極,同時用手指捏住表筆尖及這個管腳,將管子拿起來,用你的舌尖舔一下b極,看錶頭指針應有一定的偏轉,如果你各表筆接得正確,指針偏轉會大些,如果接得不對,指針偏轉會小些,差別是很明顯的。由此就可判定管子的c、e極。對PNP管,要將黑表筆接假設的e極(手不要碰到筆尖或管腳),紅表筆接假設的c極,同時用手指捏住表筆尖及這個管腳,然後用舌尖舔一下b極,如果各表筆接得正確,表頭指針會偏轉得比較大。當然測量時表筆要交換一下測兩次,比較讀數後才能最後判定。這個方法適用於所有外形的三極管,方便實用。根據錶針的偏轉幅度,還可以估計出管子的放大能力,當然這是憑經驗的。第三種方法:先判定管子的NPN或PNP類型及其b極後,將表置於R×10kΩ檔,對NPN管,黑表筆接e極,紅表筆接c極時,錶針可能會有一定偏轉,對PNP管,黑表筆接c極,紅表筆接e極時,錶針可能會有一定的偏轉,反過來都不會有偏轉。由此也可以判定三極管的c、e極。不過對於高耐壓的管子,這個方法就不適用了。

電氣百科:高壓斷路器試驗危險點分析及控制措施

電氣百科:萬用表、高壓斷路器、高壓變頻器、變壓器、變頻器知識

作業內容:測量絕緣電阻、測量35kV及以上少油和多油斷路器的介質損耗因數、測量洩漏電流、交流耐壓試驗危險點:人身觸電

控制措施:

1.1測絕緣電阻,更改接線或試驗結束時要將設備對地放電。

1.2要有防止走錯間隔的可靠措施。

1.3絕緣工器具每次使用前應檢查。

1.4應在圍欄內工作,試驗時設備上不準有人作業。

1.5做交直流耐壓試驗時,試驗人員與升壓設備要保持足夠的安全距離。

1.6試驗裝置的金屬外殼應可靠接地,應使用有明顯斷開點的雙極刀閘。

電氣百科:高壓變頻器的選型——注意事項

電氣百科:萬用表、高壓斷路器、高壓變頻器、變壓器、變頻器知識

1. 選擇過高電壓等級的弊端

選擇過高的電壓等級造成投資過高,回收期長。電壓等級的提高,電機的絕緣必須提高,使電機價格增加。電壓等級的提高,使變頻器中電力半導體器件的串聯數量加大,成本上升。

可見,對於200~2000kW的電機系統採用6kV、10kV電壓等級是極不經濟、很不合理的。

2. 變頻器容量與整流裝置相數關係

變頻器裝置投入6kV電網必須符合國家有關諧波抑制的規定。這和電網容量和裝置的額定功率有關。短路容量在1000MVA以內,1000kW裝置12相(變壓器副邊雙繞組)即可,如果24相功率就可達2000kW,12相基本上消除了幅值較大的5次和7次諧波。

整流相數超過36相後,諧波電流幅值降低不顯著,而製造成本過高。如果電網短路容量2000MVA,則裝置容許容量更大。

3. 把最高電壓降到3kV以下可節約大量投資

從電力電子器件特性及安全係數考慮電壓等級的必要性,受電力電子器件電壓及電機允許的dv/dt限制,6kV變頻器必須採用多電平或多器件串聯,造成線路複雜,價格昂貴,可靠性差。對於6kV變頻器若是用1700VIGBT,以美國羅賓康的PERFECTHARMONY系列6kV高壓變頻器為例,每相由5個額定電壓為690V的功率單元串聯,三相共60只器件。若是用3300V器件,也需3串共30只器件,數量巨大。另一方面裝置電流小,器件的電流能力得不到充分利用,以560kW為例,6kV電機電流僅60A左右,而1700V的IGBT電流已達2400A,3300V器件電流達1600A,有大器件不能用,偏要用大量小器件串聯,極不合理。即使電機功率達2000kW,電流也只有140A左右,仍很小。

國外的中壓變頻器有多個電壓等級:1.1kV,2.3kV,3kV,4.2kV,6kV,它們主要由電力電子器件的電壓等級所確定。

輸出同樣功率的變頻器,使用較高電壓或較多單元串聯所花的代價大於用較低電壓,較少數量而電流較大單元的代價,也就是說在器件電流允許條件下應儘可能選用低的電壓等級。

4. 隔離變壓器問題

為了隔離、改善輸入電流及減小諧波,現在所有的中壓“直接變頻”器都不是真正的直接變頻,其輸入側都裝有輸入變壓器,這種配置短時間內不會改變。既然輸入側有變壓器,變頻器和電機的電壓就沒有必要和電網一樣,非用10kV和6kV不可,功率2500kW以下電壓可以不超過3kV,因此就有了變頻器和電機的合理電壓等級問題。

200kW~800kW以下的變頻調速宜選用380V或660V電壓等級。它線路簡單,技術成熟,可靠性高,dv/dt小,價格便宜。仍以560kW電機為例,630kW660V的低壓變頻器約35萬,而同容量6000V中壓變頻器約90萬。實現的方法有低-低,低-高,高-低和高-低-高等幾種形式。由於電機,變壓器的價格遠低於變頻器,即使更換電機、變壓器也合理。

5. 原有6kV高壓電機如何與3.5kV變頻器電壓配套

自建國以來傳統的6kV高壓電機是已投產的主要產品,為了推廣3.5kV變頻器不可能再花錢更換電機,作者提出一個簡便方案,以供參考。

製造廠原有6kV電機一般均為星形接線,其相繞組承受實際電壓為3468V,故只要將繞組改接成三角形其它不變。配3.5kV變頻器就把變頻器電壓從6kV下降到3.5kV,從表3可見4.5kV器件不串聯就可承受3kV耐壓。如果用1.7kV器件3串即可。製造成本將下降30%。而我國目前30MW機組最大電機2500kW採用3.5kV電壓完全合理。

6. 對電網諧波汙染的防治措施

從實用角度整流橋組成12相整流可消除5、7次諧波已基本滿足電網諧波要求。因此400kW~800kW採用12相整流即可,1000kW~2500kW採用24相也可以符合要求。

電氣百科:解析變壓器的防雷方法

電氣百科:萬用表、高壓斷路器、高壓變頻器、變壓器、變頻器知識

變壓器利用電磁感應的原理來改變交流電壓的裝置,主要構件是初級線圈、次級線圈和鐵心(磁芯)。在電器設備和無線電路中,常用作升降電壓、匹配阻抗,安全隔離等。變壓器按用途可以分為:配電變壓器、電力變壓器、全密封變壓器、組合式變壓器、乾式變壓器、 單相變壓器、電爐變壓器、整流變壓器、電抗器、抗干擾變壓器、防雷變壓器、箱式變電器、試驗變壓器、轉角變壓器 、大電流變壓器、勵磁變壓器。

變壓器根據不同的需求分為大型變壓器和小型變壓器,併入電網運行的小電站的升壓變壓器(容量<1000kVA),一般採用連接組別為Y/Y0的配電變壓器代替。

(1)禁止對接地土壤施加食鹽等來減小土壤電阻率。因為食鹽對接地體具有嚴重的腐蝕性,在加食鹽後,接地電阻可能達到要求,甚至很小,但時間長了,接地電阻遠遠大於規定值。雷擊時,由於反擊而燒燬變壓器。

(2)測試接地電阻。每年雷雨季節前(2~3月)對變壓器接地電阻進行測試,遇不符合規定值的,及時採取措施,同時檢查防雷設施,尤其要注意引下線在土壤交界處和所有接頭處的檢查,使其達到要求。為了減小側量誤差和確保人身安全,應在斷開接地引下線的情況下測量接地電阻值。

(3)正確設置避雷器。配電變壓器上可能出現正、逆變換波的過電壓,為了防止雷擊10kV線路造成變壓器損壞,對Y/Y0或Y/Y接線的配電變壓器,均應在其高低壓側各裝設一組閥型避雷器。實踐證明,避雷器越靠近配電變壓器,防雷效果越好。可將高低壓側避雷器安裝在變壓器頂蓋邊上,再將變壓器外殼、避雷器引下線和變壓器中性線連接在一起後,三者共同接地。接地引下線應採用截面積為25mm2的銅絞線(或鋼絞線),且長度應達到最短,這樣作用在配電變壓器上的雷擊過電壓近似於避雷器的殘壓,減輕了擊穿變壓器絕緣的危險性。

(4)定期校試避雷器。為了起到保護變壓器免遭雷擊的目的,對於100kVA及以土的配電變壓器,每年校試避雷器一次,且接地電阻值不得大於4Ω;100kVA以下的避雷器,每兩年校試一次,且接地電阻值不得大於10Ω;對於不合格者應及時進行處理。

電氣百科:變頻器產生過電壓原因及防止措施

電氣百科:萬用表、高壓斷路器、高壓變頻器、變壓器、變頻器知識

變頻器在調試與使用過程中經常會遇到。過電壓產生後,變頻器為了防止內部電路損壞,其過電壓保護功能將動作,使變頻器停止運行,導致設備無法正常工作。因此必須採取措施消除過電壓,防止故障的發生。由於變頻器與電機的應用場合不同,產生過電壓的原因也不相同,所以應根據具體情況採取相應的對策。

一、過電壓的產生與再生制動

所謂變頻器的過電壓,是指由於種種原因造成的變頻器電壓超過額定電壓,集中表現在變頻器直流母線的直流電壓上。正常工作時,變頻器直流部電壓為三相全波整流後的平均值。若以380V線電壓計算,則平均直流電壓Ud=1.35U線=513V。

在過電壓發生時,直流母線上的儲能電容將被充電,當電壓上升至700V左右時,(因機型而異)變頻器過電壓保護動作。造成過電壓的原因主要有兩種:電源過電壓和再生過電壓。電源過電壓是指因電源電壓過高而使直流母線電壓超過額定值。而現在大部分變頻器的輸入電壓最高可達460V,因此,電源引起的過電壓極為少見。

本文主要討論的問題是再生過電壓。產生再生過電壓主要有以下原因:當大GD2(飛輪力矩)負載減速時變頻器減速時間設定過短;電機受外力影響(風機、牽伸機)或位能負載(電梯、起重機)下放。由於這些原因,使電機實際轉速高於變頻器的指令轉速,也就是說,電機轉子轉速超過了同步轉速,這時電機的轉差率為負,轉子繞組切割旋轉磁場的方向與電動機狀態時相反,其產生的電磁轉矩為阻礙旋轉方向的制動轉矩。所以電動機實際上處於發電狀態,負載的動能被“再生”成為電能。

再生能量經逆變部續流二極管對變頻器直流儲能電容器充電,使直流母線電壓上升,這就是再生過電壓。因再生過電壓的過程中產生的轉矩與原轉矩相反,為制動轉矩,因此再生過電壓的過程也就是再生制動的過程。換句話說,消除了再生能量,也就提高了制動轉矩。如果再生能量不大,因變頻器與電機本身具有20%的再生制動能力,這部分電能將被變頻器及電機消耗掉。若這部分能量超過了變頻器與電機的消耗能力,直流回路的電容將被過充電,變頻器的過電壓保護功能動作,使運行停止。為避免這種情況的發生,必須將這部分能量及時的處理掉,同時也提高了制動轉矩,這就是再生制動的目的。

二、過電壓的防止措施

由於過電壓產生的原因不同,因而採取的對策也不相同。對於在停車過程中產生的過電壓現象,如果對停車時間或位置無特殊要求,那麼可以採用延長變頻器減速時間或自由停車的方法來解決。所謂自由停車即變頻器將主開關器件斷開,讓電機自由滑行停止。

如果對停車時間或停車位置有一定的要求,那麼可以採用直流制動(DC制動)功能。直流制動功能是將電機減速到一定頻率後,在電機定子繞組中通入直流電,形成一個靜止的磁場。電機轉子繞組切割這個磁場而產生一個制動轉矩,使負載的動能變成電能以熱量的形式消耗於電機轉子迴路中,因此這種制動又稱作能耗制動。

在直流制動的過程中實際上包含了再生制動與能耗制動兩個過程。這種制動方法效率僅為再生制動的30-60%,制動轉矩較小。由於將能量消耗於電機中會使電機過熱,所以制動時間不宜過長。而且直流制動開始頻率,制動時間及制動電壓的大小均為人工設定,不能根據再生電壓的高低自動調節,因而直流制動不能用於正常運行中產生的過電壓,只能用於停車時的制動。

對於減速(從高速轉為低速,但不停車)時因負載的GD2(飛輪轉矩)過大而產生的過電壓,可以採取適當延長減速時間的方法來解決。其實這種方法也是利用再生制動原理,延長減速時間只是控制負載的再生電壓對變頻器的充電速度,使變頻器本身的20%的再生制動能力得到合理利用而已。至於那些由於外力的作用(包括位能下放)而使電機處於再生狀態的負載,因其正常運行於制動狀態,再生能量過高無法由變頻器本身消耗掉,因此不可能採用直流制動或延長減速時間的方法。

再生制動與直流制動相比,具有較高的制動轉矩,而且制動轉矩的大小可以跟據負載所需的制動力矩(即再生能量的高低)由變頻器的制動單元自動控制。因此再生制動最適用於在正常工作過程中為負載提供製動轉矩。

三、再生制動的方法

1.能量消耗型:這種方法是在變頻器直流回路中並聯一個制動電阻,通過檢測直流母線電壓來控制一個功率管的通斷。在直流母線電壓上升至700V左右時,功率管導通,將再生能量通入電阻,以熱能的形式消耗掉,從而防止直流電壓的上升。由於再生能量沒能得到利用,因此屬於能量消耗型。同為能量消耗型,它與直流制動的不同點是將能量消耗於電機之外的制動電阻上,電機不會過熱,因而可以較頻繁的工作。

2.並聯直流母線吸收型:適用於多電機傳動系統(如牽伸機),在這個系統中,每臺電機均需一臺變頻器,多臺變頻器共用一個網側變流器,所有的逆變部並接在一條共用直流母線上。這種系統中往往有一臺或數臺電機正常工作於制動狀態,處於制動狀態的電機被其它電動機拖動,產生再生能量,這些能量再通過並聯直流母線被處於電動狀態的電機所吸收。在不能完全吸收的情況下,則通過共用的制動電阻消耗掉。這裡的再生能量部分被吸收利用,但沒有回饋到電網中。

3.能量回饋型:能量回饋型的變頻器網側變流器是可逆的,當有再生能量產生時,可逆變流器將再生能量回饋給電網,使再生能量得到完全利用。但這種方法對電源的穩定性要求較高,一旦突然停電,將發生逆變顛覆。

四、再生制動的應用

一條化纖長絲牽伸生產線,由三臺牽伸機組成,分別由三臺電機驅動。一輥電機功率22KW、4極,採用蝸桿減速器,速比為25:1;二輥電機功率37KW、4極,蝸桿減速器,速比16:1;三輥電機功率45KW,採用圓柱齒輪減速器,速比6:1。電機分別採用華為TD2000-22KW三墾IHF37K,45K變頻器驅動。三臺變頻器根據牽伸比及速比採用比例控制。它的工作過程是這樣的:絲束繞在一輥、二輥、三輥上,由變頻器控制三輥之間不同的速度對絲束進行牽伸。

開車調試時因牽伸比小,絲束總旦較低,系統開車正常。在投產一段時間後,由於工藝調整,增大了牽伸比及絲束總旦,(牽伸比由工藝決定,總旦通俗的說,就是絲束的粗細及根數多少,總旦越高,絲束越粗。牽伸倍數或總旦越大,三輥對二輥、一輥的拖力越大。)這時出現了問題。開車時間不長,一輥變頻器頻繁顯示SC(過電壓防止),二輥變頻器偶爾也有這種現象。時間稍長,一輥變頻器保護停機,故障顯示E006(過電壓)。通過對故障現象進行仔細的分析,得出以下結論:由於一輥與二輥之間的牽伸比佔總牽伸倍數的70%,而二輥、三輥電機功率均大於一輥,因此一輥電機實際工作於發電狀態,它必須產生足夠的制動力矩,才能保證牽伸倍數。二輥則根據工藝狀況工作於電動與制動狀態之間,只有三輥為電動狀態。

也就是說,一輥變頻器若不能將電機產生的再生能量處理掉,它就不能產生足夠的制動力矩,那麼將會被二輥“拖跑”。被“拖跑”的主要原因在於變頻器為防止過電壓跳閘而採取的自動提高輸出頻率的功能(即“SC”失速防止功能)。

變頻器為了降低再生能量,將會自動增加電機轉速,試圖降低再生電壓,但是因再生能量過高,所以並不能阻止過電壓的發生。因此,問題的焦點是必須保證一輥、二輥電機具有足夠的制動力矩。增加一輥、二輥電機及變頻器容量可以達到這個目的,但這顯然是不經濟的。而將一輥、二輥產生的過電壓及時處理掉,不讓變頻器的直流電壓升高,也能夠提供足夠的制動力矩。

由於在系統設計時未考慮到這點,採用共用直流母線吸收型或能量回饋型的方法已不可能。經仔細論證,只有採用將一輥、二輥變頻器各增加一組外接制動單元的方案。經計算選用了兩組華為TDB-4C01-0300制動組件。開車後兩組制動單元電阻尤其是一輥制動阻工作頻率非常之高,說明我們的分析是正確的。整個系統運行近一年,再也沒有發生過過電壓現象。

電氣百科,工業網址大全,電氣頭條,電的世界我最懂!


分享到:


相關文章: