09.19 節能環保的開關電源設計方案

概述

節能環保的開關電源設計方案

開關電源是利用現代電力電子技術,控制開關晶體管開通和關斷的時間比率,維持穩定輸出電壓的一種電源。從上世紀90年代以來開關電源相繼進入各種電子、電器設備領域,計算機、程控交換機、通訊、電子檢測設備電源、控制設備電源等都已廣泛地使用了開關電源。隨著電源技術的發展,低電壓,大電流的開關電源因其技術含量高,應用廣,越來越受到人們重視。在開關電源中,正激和反激式有著電路拓撲簡單,輸入輸出電氣隔離等優點,廣泛應用於中小功率電源變換場合。跟反激式相比,正激式變換器變壓器銅損較低,同時,正激式電路副邊紋波電壓電流衰減比反激式明顯,因此,一般認為正激式變換器適用在低壓,大電流,功率較大的場合。

系統總體框圖

一種高效小型化的開關電源設計的系統總體框圖如圖1所示。

節能環保的開關電源設計方案

圖1:系統總體框圖

輸入的市電經淨化濾波後整流成300V左右的直流電壓加到半橋電路的MOS管上。控制電路由最常用SG3525芯片組成。控制電路通過高壓部件反饋繞組檢測輸出電壓的變化量,產生激勵脈衝去驅動功率MOS場效應管,實現穩壓輸出。

電源設計的基本技術

3.1有源鉗位技術

正激DC/DC變換器其固有缺點是功率晶體管截止期間高頻變壓器必須磁復位。以防變壓器鐵心飽和,因此必須採用專門的磁復位電路。通常採用的復位方式有三種,即傳統的附加繞組法、RCD鉗位法、有源鉗位法。三種方法各有優缺點:磁復位繞組法正激變換器的優點是技術成熟可靠,磁化能量可無損地回饋到直流電路中去,可是附加的磁復位繞組使變壓器結構複雜化,變壓器漏感引起的關斷電壓尖峰需要RC緩衝電路來抑制,佔空比D<0.5,功率開關管承受的電壓應力與輸入電源電壓成正比。RCD鉗位正激變換器的優點是磁復位電路簡單,佔空比D可以大於0.5,功率開關管承受電壓應力較低,但大部分磁化能量消耗在鉗位電阻中,因此它一般適用於變換效率不高且價廉的電源變換場合。有源鉗位技術是三種技術中效率最高的技術,它的電路圖如圖2所示,工作原理如圖3所示。

節能環保的開關電源設計方案

圖2:有源鉗位同步整流正激式電路圖

節能環保的開關電源設計方案

圖3:有源鉗位電路工作原理圖

在 DT時段之前,開關管S1 導通,激磁電流iM為負,即從Cr通過S1流向Tr,在DT階段,開關管S的驅動脈衝ugs使其導通,同時ugs1=0,使S1 關斷,在Vin的作用下,激磁電流由負變正,原邊功率通過變壓器傳到副邊,給輸出端電感L充電;在(1-D)T時段,ugs=0,S關斷,ugs1到來使 S1導通,iM通過S1的反並二極管向Cr充電,在Cr和Tr漏感構成的諧振電路的作用下,iM由正變負,變壓器反向激磁。從以上分析中可以看出:有源鉗位正激變換器變壓器鐵心工作在雙向對稱磁化狀態,提高了鐵心利用率,鉗位電容的穩態電壓隨開關佔空比而自動調節,因而佔空比可大於50%;Vo一定時,主開關、輔助開關應力隨Vin的變化不大;所以,在佔空比和開關應力允許的範圍內,能夠適應較大輸入電壓變化範圍的情況。不足之處是增加了一個管子,使得電路變得複雜。

3.2同步整流技術

在低電壓大電流功率變換器中,若採用傳統的普通二極管或肖特基二極管整流由於其正向導通壓降大(低壓硅二極管正向壓降約0.7V,肖持基二極管正向壓降約 0.45V,新型低電壓肖特基二極管可達0.32V),整流損耗成為變換器的主要損耗,無法滿足低電壓大電流開關電源高效率,小體積的需要。

MOSFET導通時的伏安特性為一線性電阻,稱為通態電阻RDS,低壓MOSFET新器件的通態電阻很小,如:IRL3102(20V,61A)、 IRL2203S(30V,116A)、IRL3803S(30V,100A)通態電阻分別為0.013Ω、0.007Ω和0.006Ω,它們在通過 20A電流時,通態壓降不到0.3V.另外,功率MOSFET開關時間短,輸入阻抗高,這些特點使得MOSFET成為低電壓大電流功率變換器首選的整流器件。功率MOSFET是一種電壓型控制器件,它作為整流元件時,要求控制電壓與待整流電壓的相位保持同步才能完成整流功能,故稱為同步整流電路。圖1為典型的降壓型“同步”開關變換器電路(當電路中無SR時,為“普通”的降壓型開關變換器電路)。

電源設計的電路

所設計的電源參數如下:輸入電壓為50(1±10%)V,輸出電壓為3.3V,電流為20A,工作頻率為100kHz.採用的主電路拓撲如圖4所示。

節能環保的開關電源設計方案

4:主電路拓撲圖

由於有源鉗位採用的是FLYBACK型鉗位電路,它的鉗位電容電壓為:

Vc=Vin

所選用的控制IC芯片為UC3844,它的最大佔空比為50%,所以電容上的電壓最大為Vin,電容耐壓為60V以上,只要選取足夠大即可保證電路能正常工作,本電路所選取的鉗位電容為47μF/100V.

有源鉗位管S1的驅動必須跟變壓器原邊的地隔離開,而且S1的驅動信號必須跟開關管S驅動信號反相,使用UCC3580可以實現兩個管子的驅動,可是這個芯片並不常見,因而這裡選用UC3844跟IR2110組合。UC3844出來的控制信號用來作為IR2110的低端輸入,其反相信號作為IR2110的高端輸入,IR2110的高端驅動通過內部自舉電路來實現隔離。這樣,我們就達到了驅動兩個開關管的目的。

在輸出整流電路中,當續流二極管(即SR的反並二極管)受正向電壓導通時,應及時驅動SR導通,以減小壓降和損耗。但為了避免SR與SR1同時導通,造成短路事故,必須有“死區”時間,這時仍靠二極管D導通。SR的開關瞬時要與續流二極管的通斷瞬時密切配合,因此對開關速度要求很高。另外,從成本綜合考慮,選用IRL3102.

變壓器的設計跟一般正激式變換器變壓器設計差不多,只是要考慮同步整流管的驅動。所選用的同步整流管的驅動開通電壓為4V左右,電路輸出電壓為3.3V,輸出端相當於一個降壓型電路,佔空比最大為0.5,所以變壓器副邊電壓至少為6.6V.因為MOSFET的柵-源間的硅氧化層耐壓有限,一旦被擊穿則永久損壞,所以實際上柵-源電壓最大值在20~30V之間,如電壓超過20V,應該在柵極上接穩壓管。

輸入電壓範圍的調製

工作在高頻高壓條件下的小功率電源,輸入電壓範圍的調節會出現困難。不但調整率很差,而且在輸入電壓超過一定值時,電源無輸出,或輸出電壓不穩定。原因是高壓小功率電源的佔空比很小,工作時的導通脈寬很窄(呈窄脈衝工作狀態)。當輸入電壓升高時,輸出能量不變,脈衝寬度變窄,幅度加長。輸入電壓升高到一定限度,控制電路呈失控狀態,無法實現有效的閉環控制,導致整個電路關閉。為解決這個問題,經過分析試驗,設計了一個輸入電壓調節電路,如圖5所示。

節能環保的開關電源設計方案

圖5:輸入電壓調節電路

它實際上是一個輸入電壓預穩壓電路,輸入電壓經過它,成為基本穩定的電壓,再加到主電路(開關電路)上。

經過調試,試驗和長期裝機應用,證明了該電路的穩定與可靠。下圖表1是設置輸入電壓調節電路與沒有設置時的實測數據。為簡化起見,這裡只給出輸出主電路(25kV)參數。明顯看出,加了該電路後,輸入電壓調整率大大提高,輸入電壓調節範圍也增至250V.

節能環保的開關電源設計方案

表1:輸入電壓變化對輸出電壓的影響

由於上電時,輸入端瞬間衝擊電流很大,對輸入電壓調節電路造成危害。為此,還專門設計了輸入緩衝電路。

實驗結果和波形分析

開關管S1和S的Uds波形如圖6所示,RefA為S管壓降波形,50V/div,RefB為S1管壓降波形,50V/div.電路此時工作在Vin= 60V左右,S1和S的開關應力大概為120V,D=0.5左右。

節能環保的開關電源設計方案

圖6:開關管S和S1的uds波形

圖7為變壓器輸出電壓,也就是同步整流管SR1和SR的驅動信號,正的部分為SR的驅動信號,負的部分為SR1的驅動信號。

節能環保的開關電源設計方案

圖7:同步整流管的驅動波形

實驗所得波形和分析的波形基本吻合,只是在開關轉換瞬間,電壓有小尖峰,這是由電路的雜散參數引起的。該電路的工作效率經過測量大約在90%左右,基本達到設計的要求,具有實用性的價值。

結語

本文基於開關電源中正激和反激式有著電路拓撲簡單,輸入輸出電氣隔離等優點,提出了一種高效小型化的開關電源設計方案,通過方案中的電源開關的設計表明,有源逆變加同步整流電路用在低壓大電流的正激式電路設計中,不加PFC電路時,能夠取得很高的效率,從而證實了本方案的可行性。


分享到:


相關文章: