厲害!氫分子的“電子雲”竟然可以“被看到”

厲害!氫分子的“電子雲”竟然可以“被看到”

據物理學家組織網2018年1月9日報道,德國、美國、西班牙、俄羅斯以及澳大利亞的科學家合作首次創建了氫分子波函數平方圖像Ψ2(H2),相關研究結果已經於2017年12月22日在《自然通訊》(Nature Communications)網站發表——M. Waitz, R. Y. Bello, D. Metz, J. Lower, F. Trinter, C.Schober, M. Keiling, U. Lenz, M. Pitzer, K. Mertens, M. Martins, J. Viefhaus,S. Klumpp, T. Weber, L. Ph. H. Schmidt, J. B. Williams, M. S. Schöffler, V. V. Serov, A. S. Kheifets, L. Argenti, A. Palacios,F. Martín, T. Jahnke, R. Dörner. Imaging thesquare of the correlated two-electron wave function of a hydrogen molecule.Nature Communications, 2018, 8: 2266. DOI: 10.1038/s41467-017-02437-9.

參與此項研究的有來自德國歌德大學(J. W. GoetheUniversität)、德國卡塞爾大學(Universität Kassel)、德國漢堡大學(Universität Hamburg)、德國電子同步加速器中心(Deutsches Elektronen-SynchrotronDESY)、德國FS-FLASH-D;西班牙馬德里自治大學(Universidad Autónoma de Madrid)、Instituto Madrileo de EstudiosAvanzados en Nanociencia;美國勞倫斯伯克利國家實驗室(Lawrence BerkeleyNational Laboratory)、美國雷諾內華達大學(University of NevadaReno)、美國中佛羅里達大學(University of CentralFlorida);俄羅斯薩拉托夫州立大學(Saratov StateUniversity);澳大利亞國立大學(The AustralianNational University)的科研人員。審稿人對此評價是具有里程碑意義的研究成果。它不僅是最前沿的實驗結果和非常全面的理論分析的完美結合,而且是氫分子作為一種基本的雙電子體系,在相關雙電子波函數成像方面的一項原始的、非常有趣的研究,該研究成果結構清晰,同時便於非專業讀者閱讀。在物理學和化學的廣泛領域中,所提出的工作具有很高的影響和激發新思維的潛力。因此,審稿人非常熱情地推薦這一具有里程碑意義的作品,在沒有任何重大變化的情況下給予發表(Peer Review File)。更多信息請注意瀏覽原文或者相關報道:

Physicistscreate first direct images of the square of the wave function of a hydrogenmolecule

January9, 2018 by Lisa Zyga

厲害!氫分子的“電子雲”竟然可以“被看到”

具有兩個電子的氫分子的波函數的平方的圖像

物理學家第一次開發了一種方法來可視化地描繪電子之間的糾纏。由於這些相關性在決定分子的波函數 - 描述分子的量子態時起著重要的作用,研究人員然後使用新的方法來產生氫(H2)分子的雙電子函數的平方。

儘管已經有多種技術用於對原子和分子的單個電子進行成像,但是這是第一種可以直接描繪電子之間相關性的方法,並且允許研究人員探索電子的性質如何相互依賴。

來自德國,西班牙,美國,俄羅斯和澳大利亞各個研究機構的研究人員M. Waitz等人在最近的Nature Communications上發表了一篇關於這種新成像方法的論文。

“還有其他一些方法可以讓人們從不同的觀察角度重新建立相關性,但據我所知,這是第一次通過查看譜圖來獲得相關性的指向性,”馬德里自治大學的FernandoMartín告訴Phys .ORG。 “與波函數平方不同片段的傅里葉變換(或者等效地表示波動函數在動量空間中的不同片段的表示)是相同的。不需要重建或濾波或變換:頻譜直接反射動量空間中的波函數片“。

這種新方法包括結合兩種已經廣泛使用的成像方法:光電成像和反應片段的重合檢測。研究人員同時使用這兩種方法,通過使用第一種方法在一個電子上將該電子投射到檢測器上,並使用第二種方法在另一個電子上來確定其性質如何響應。

同時使用這兩種方法揭示了兩個電子如何相關併產生H2相關雙電子波函數平方的圖像。物理學家強調一個重要的觀點:這些是波函數平方的圖像,而不是波函數本身。

“波函數在量子物理中是不可觀測的,所以不能被觀察,”馬丁說,“只有波函數的平方是可觀測的(如果你有這個工具的話),這是量子物理學基本原理之一,那些聲稱他們能夠觀測到波函數的人並沒有使用合適的語言,因為這是不可能的:他們所做的是通過做一些近似來從一些測量的光譜中重建它,它不能被間接觀測。

研究人員預計,新方法可以用來對兩個以上電子的分子進行成像,通過檢測多個電子的反應片段。該方法還可以導致對多個分子的波函數之間的相關性進行成像的能力。

馬丁說:“顯然,要遵循的自然步驟是在更復雜的分子中嘗試類似的方法。這種方法很可能適用於小分子,但是如果它能在非常複雜的分子中起作用還不清楚,不是因為基本思想的限制,而是主要因為實驗的侷限性,因為複雜分子中的重合實驗要困難得多由於許多核自由度而進行分析“。

對電子-電子相關性和相應的分子波函數進行可視化的能力對理解物質的基本性質有著深遠的影響。例如,稱為Hartree-Fock方法的近似波函數最常用的方法之一不考慮前電子 - 電子相關性,因此經常與觀測不一致。

此外,電子 - 電子相關性是引人入勝的量子效應的核心,例如電導率(當電阻在極低溫度下降至零時)和巨磁電阻(由於附近磁層的磁化的平行對準而導致電阻大大降低時)。電子相關性也在從吸收單光子的分子同時發射兩個電子中起作用,這種現象稱為“單光子雙電離”。

最後,結果也可能導致實際應用,例如能夠實現與場電子激光和基於激光的X射線源的相關成像。

進一步探索:用於光物質相互作用的空間時間傳感器

Image of the square of thewave function of a hydrogen molecule with two electrons. Credit: Waitz et al.Published in Nature Communications

For the first time, physicistshave developed a method to visually image the entanglement between electrons.As these correlations play a prominent role in determining a molecule's wavefunction—which describes the molecule's quantum state—the researchers then usedthe new method to produce the first images of the square of the two-electronwave function of a hydrogen (H2) molecule.

Although numerous techniquesalready exist for imaging the individual electrons of atoms and molecules, this is the first method that can directly image thecorrelations between electrons and allow researchers to explore how theproperties of electrons depend on one another.

The researchers, M. Waitz etal., from various institutes in Germany, Spain, the US, Russia, and Australia,have published a paper on the new imaging method in a recent issue of NatureCommunications.

"There are other methodsthat allow one to reconstruct correlations from different observations;however, to my knowledge, this is the first time that one gets a directimage of correlations by just looking at a spectrum," coauthor FernandoMartín at the Universidad Autónoma de Madrid told Phys.org. "Therecorded spectra are identical to the Fourier transforms of the differentpieces of the square of the wave function (or equivalently, to therepresentation of the different pieces of the wave function in momentum space).No reconstruction or filtering or transformation is needed: the spectrumdirectly reflects pieces of the wave function in momentum space."

The new method involvescombining two imaging methods that are already widely used: photoelectronimaging and the coincident detection of reaction fragments. The researcherssimultaneously employed both methods by using the first method on one electronto project that electron onto a detector, and using the second method on theother electron to determine how its properties change in response.

The simultaneous use of bothmethods reveals how the two electrons are correlated and produces an image ofthe square of the H2correlated two-electron wave function. Thephysicists emphasize one important point: that these are images of the squareof the wave function, and not the wave function itself.

"The wave function is notan observable in quantum physics, so it cannot be observed," Martín said."Only the square of the wave function is an observable (if you have thetools to do it). This is one of the basic principles of quantum physics. Thosewho claim that they are able to observe the wave function are not using theproper language because this is not possible: what they do is to reconstruct itfrom some measured spectra by making some approximations. It can never be adirect observation."

The researchers expect thatthe new approach can be used to image molecules with more than two electrons aswell, by detecting the reaction fragments of multiple electrons. The methodcould also lead to the ability to image correlations between the wave functionsof multiple molecules.

"Obviously, the naturalstep to follow is to try a similar method in more complicated molecules,"Martín said. "Most likely, the method will work for small molecules, butit is not clear if it will work in very complex molecules. Not because oflimitations in the basic idea, but mainly because of experimental limitations,since coincidence experiments in complex molecules are much more difficult toanalyze due to the many nuclear degrees of freedom."

The ability to visualizeelectron-electron correlations and the corresponding molecular wave functions hasfar-reaching implications for understanding the basic properties of matter. Forinstance, one of the most commonly used methods for approximating a wavefunction, called the Hartree-Fock method, does not account forelectron-electron correlations and, as a result, often disagrees withobservations.

In addition, electron-electroncorrelations lie at the heart of fascinating quantum effects, such assuperconductivity (when electrical resistance drops to zero at very coldtemperatures) and giant magnetoresistance (when electrical resistance greatlydecreases due to the parallel alignment of the magnetization of nearby magneticlayers). Electron correlations also play a role in the simultaneous emission oftwo electrons from a molecule that has absorbed a single photon, a phenomenoncalled "single-photon double ionization."

And finally, the results mayalso lead to practical applications, such as the ability to realize correlation imaging withfield-electron lasers and with laser-based X-ray sources.

Explore further:Aspace-time sensor for light-matter interactions


分享到:


相關文章: