05.04 智能机器人在数控机床上的应用

1.前言

近几年,工业机器人在我国重工业和传统工业领域中应用发展呈现加速度的趋势。工业机器人是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。工业机器人的典型应用包括焊接、刷漆、组装、采集和放置、产品检测和测试等;所有的工作的完成都具有高效性、持久性、速度和准确性。

智能机器人在数控机床上的应用

一些机器人系透过程式设计而能忠实、无变异、高度准确的一再执行特定动作(反复动作)。这些动作取决于程式设定的常式,这些常式订定一系列协同动作的方向、加速度、速度、减速度、距离。在中机时代公司,一般应用于智能装配上下料,工艺焊接等方面,大大减少了人工劳动力,提高了工作效率!

智能机器人在数控机床上的应用

机器人还具有弹性的特性,因为这些机器人可能连作业目标的方位,甚或对目标所需完成的作业,都需要进行辨识。例如,为了更精确的导引,机器人常包含机器视觉子系统做为其视觉感测器,连接到强大的电脑或控制器。对于现代工业机器人而言,人工智能或者任何被误认为人工智能的东西,成为日益重要的因素。

进入21世纪后,FANUC公司开发成功了配备有视觉传感器和力觉传感器的智能机器人。到现在,已拥有可搬运质量从2公斤到1.2吨的种类丰富的商品系列。随后,FANUC公司又开发了运用这一智能机器人的长时间连续机械加工系统“机器人单元”。在整个加工工序中,加工作业本身使用数控机床进行白动化加工已经非常普遍了。但是,附带作业,比如在加工中心的夹具上进行加工材料装卸的作业,以及去毛刺毛边、清洗等作业中的很多部分,现在还是依靠人工来完成。机器人单元使用智能机器人,不但实现了这些作业的白动化,而且在世界上最早实现了720小时的长时间连续加工。现在在FANUC公司的工厂共运转着13套这样的机器人单元。机器人单元使用了两种控制装置,也就是CNC和机器人控制器。我们现在正在开发使这两种控制装置都可以单独地显示双方状态的功能,以进一步推进机床和机器人的融合。

智能机器人在数控机床上的应用

借此机会,我想简单介绍一下机器人单元的主要构成要素。所谓工业用智能机器人的智能,并不是指具有和人类一样的思考能力,而是指使机械具有能和熟练工相媲美的作业技能。不具有智能的,也就是普通的重复动作型机器人,的确可以提高工厂的自动化生产程度,降低生产成本。并且只要完成机器人动作的示教,它就能够正确地重复动作,对产品的质量稳定起到了很大的作用。但问题是必须由人将所有的动作细微环节都示教给机器人,这非常花功夫。不仅如此普通机器人还需要使用工件供给装置等专用周边设备,或很多工件定位用夹具,这就增加了设备投资费用。另外,还要由人进行事先把工件在所定的位置上正确地排放好―这样非常简单的日常劳动,出现人为机器人的白动化工作打下手的情况。为了解决这个问题,我们开发了配备有眼睛功能的视觉传感器,和有手的触觉功能的力觉传感器的智能机器人,并在此基础上开发了机器人单元。

智能机器人在数控机床上的应用

使用自动化系统,用来装配生产车间,进行生产制造,其目的是为了让产品生产和质量控制拥有最大的效率比。我们需要去到生产部门,熟悉生产的过程。需要去研究哪一些工艺是生产过程的短板,哪一些工艺过程可以实现自动化代替人工的。

技术说明

定义参数

轴数 – 在一平面中取得任意点需要两个轴;在空间中取得任意点需要三个轴。要完全控制手臂终端(意即手腕)的指向,需要另外三个轴(平摆、俯仰及横摇)。某些设计(例如SCARA机器人)牺牲运动性以换取成本、速度、精度。

自由度 – 通常跟轴数一样。

工作包络面 – 在空间中机器人可触及的区域。

运动学 – 机器人的刚体元件及关节的实际配置,决定了机器人所有可能的动作。机器人运动学的类别包含关节型、卡式座标型、平行型及SCARA。

承载量或载重量 – 机器人能举起多少重量。

速率 – 机器人能多快使其手臂终端就定位。本参数可由各轴的角速率或线速率定义,或者以复合速率,意即以手臂终端速率来定义。

加速度 – 一轴能多快加速。此系一限制因素,因为在进行短距离移动或需要常常改变方向的复杂路径时,机器人可能无法达到其最大速度。

准确度 – 机器人可以多接近要求位置。准确度的度量方式即机器人的绝对位置与要求位置的差距。利用外部感测设备如视觉系统或红外线,可改善准确度。

再现性 – 机器人再次回到程式设定的某位置的能力有多好。这跟准确度不一样。可能告诉它去某X-Y-Z位置的时候,它只走到距离那个位置不到1 mm的地方,那么这是准确度问题,可以透过校正改善。但是如果那个位置经教导并置入控制器内存,而每次它都回到距离教导位置0.1mm之内的地方,则其再现性在0.1mm以内。

智能机器人在数控机床上的应用

准确度及再现性是截然不同的度量方式。再现性对机器人而言通常是最重要的规范,而且它类似测量中的“精确度”─参照准确度及精密度。ISO 9283[7]确立测量准确度及再现性的方法。一般而言,机器人会被送去一个教导位置数次,每次都会前往4个其他位置再回到教导位置,然后测量误差值。接着用这些样本在三度空间中的标准差来量化再现性。一般的机器人当然可能会发生超过再现性的位置误差,而这可能是程序问题。再者,工作包络的不同部位会有不一样的再现性,而且再现性也会随着速率跟酬载而变。ISO 9283规定要在最大速度及在最大酬载下测量准确度及再现性。然而如此产生的数据比较悲观,因为机器人在轻负载及速度时的准确度及再现性会好很多。工业程序中的再现性也受到端接器(例如握爪)的准确度影响,甚至也受到握爪上用来抓取物件的“手指”设计的影响。例如,如果机器人从螺丝的头部拾起这个螺丝,螺丝可能会呈现随机的角度。后续尝试把螺丝放进螺丝孔的动作就很容易失败。诸如此类的情境可以透过“导入特征”加以改善,像是使孔的入口呈锥形(倒角)。

运动控制 ─ 对于某些应用,像是简单的采集和放置的组装作业,机器人只需要在数量有限的预先教导位置之间往返。对于更复杂的应用,像是焊接及涂装(喷漆),一定要沿着空间中的路径以指定的方位及速度持续控制运动。

动力源 ─ 有些机器人使用电动马达,其他则使用液压致动器。前者会比较快,后者则是出力较大且有利于喷漆之类的应用,因为火花可能引发爆炸;然而,手臂内部的低度加压空气可防止可燃蒸气及其他污染物进入。

驱动 ─ 有些机器人透过齿轮连接马达及关节;其他则是马达直接连接关节(直接驱动)。使用齿轮导致可测量到的“背隙”,这是一轴的自由移动。较小的机器人手臂常常运用高速、低扭矩的DC马达,通常需要较高的齿轮比,而这会有背隙的缺点,在这样的案例常会改用谐波齿轮减速器(Harmonic drive)。

顺应性 ─ 这是施加力量于机器人一轴能使之移动的角度或距离总量的度量。因为顺应性的关系,在携带最大酬载时机器人走到的位置会比没有携带任何酬载的时候稍微低一些。在携带高酬载而需要降低加速度的场合,顺应性也会对超越量有所影响。

2.结尾

我们认为机器人单元,是可通过长时间连续机械加工大幅度削减加工成本的,极具国际竞争力的机械加工系统。实现中国制造2025计划,工业机器人是关键,同时也是拉动经济发展和推动经济新常态的新动力引擎。

关键字:机床 智能机器人 传感器 融合


分享到:


相關文章: