贫铀能否用于制造战舰穿甲弹的弹芯或被帽?

陈明辉

  说到各国主战坦克(MBT Main Battle Tank)普遍使用的尾翼稳定脱壳穿甲弹(APFSDS),就不得不提到弹芯材料的钨铀之争。目前广泛应用于各型杆式穿甲弹弹芯的材料是贫铀合金与钨合金,二者材料性能的优劣一直以来都是大家津津乐道的话题。


美国M829A2型APFSDS脱壳的瞬间


  一般来说,在同等情况下贫铀合金的侵彻能力较钨合金高10~15%,这是由于贫铀合金材料的临界绝热剪切应变率较低,易发生绝热剪切断裂,即“自锐”效应。而钨合金在穿甲过程中,穿杆头部会“自钝”,致使侵彻阻力增大,侵彻力深度降低。

  下图为纯钨、钨合金和铀合金材料弹芯穿甲过程中弹头的行为特征。

自钝与自锐效果。注:Pure W——纯钨;WHA(Tungsten Heavy Alloy)——高密度钨合金;DU-3/Ti ——一种贫铀合金材料(含Ti/V,钛/钒)


  由图可见,在同等弹芯直径条件下,贫铀合金穿甲通道直径最小,穿甲阻力最小。

  另外,贫铀易燃,在穿甲后具有强烈的纵火作用,对车辆成员有更强的杀伤效果,更容易引发二次效应。

  但是贫铀也有缺点:

  贫铀具有放射性,会威胁坦克装甲车辆成员的健康,燃烧过程中产生的放射性烟气被吸入后会造成严重内照射。

  贫铀化学活性高,容易氧化变质,不利于长期储存。

  贫铀合金刚度较低,需要使用更大尺寸的弹托防止在膛内加速时弯曲,增加了消极质量,减小了穿甲体获得的动能。

  U的熔点为1133℃,W的熔点为3370°C。由于APFSDS的飞行速度达M5~M6,在这种速度下的气动加热可达2500K左右,在强大的高温和气动力的耦合作用下,贫铀合金的形变较大。弹芯产生的形变会降低速度、加剧章动影响精度和破坏着靶姿态而降低穿深。

  贫铀合金的流变极限强度较低。在穿杆高速撞击并穿透靶板的过程中会发生压缩变形,应变速率提高,峰值应力也将逐渐增大,“自锐”效应将被削弱。

  贫铀较低的剪切强度在带来自锐特性的同时,也使得面对爆炸反应装甲、约束式复合装甲时穿杆更容易被折断。

  下图展示了不同材料的弹芯在长径比λ=30、冲击动能E=10MJ的情况下,着速与穿深的关系。

  一定长径比及冲击动能下着靶速度与穿深的关系。注:WHA(Tungsten Heavy Alloy)——高密度钨合金;DU(Depleted Uranium)——贫铀;Steel—— 钢;Target ——目标;BHN(Brinell Hardness Number)——布氏硬度,后面的数字越大,材料越硬;轧制均质钢RHA一般特指RC-27钢板(4340钢)BHN=250~390,对应国标钢号40CrNiMoA。


  目前以固体火药为发射动力的120~125mm坦克炮炮口动能都在10MJ~13MJ之间,已经非常趋近常规火炮的极限。在实际应用中,穿甲体的质量和初速是互相制约的——穿甲体加长,速度就会降低;速度升高,穿甲体就要缩短,在设计上需要取舍。

  在当前技术条件下,射击均质钢装甲时,贫铀合金穿甲弹的最佳着速Vc=1600m/s,对于钨合金穿甲弹Vc=2000m/s(着速可以大致视为炮口初速-速度降)。这一点在弹药参数选择上有明显体现,例如德国DM-43的初速1900m/s、美国M829A3的初速1550m/s、我国出口型125弹初速1800m/s等。

  钨合金所具有的高熔点、高强度使其可以适应更高的发射过载和更大的飞行速度。

  制约钨合金杆式穿甲弹穿深的最主要因素是“自钝”效应。即前文提到的在穿甲过程中钨合金穿杆头部形成的“蘑菇头”。

  提高钨合金弹穿深最直接的方法是增大发射初速。

  采取措施减小钨合金自钝现象带来的影响,也是当前技术条件下提高穿深的有效方法之一。主要有以下两种方式:

  (1)改进材料组份,使其具有绝热剪切特征:

  钨铪合金,有50W-50Hf和74W-26Hf两种,采用流化床化学汽相沉积加固态固结工艺制成,准静态压缩力学性能与 90W-7Ni-3Fe合金相当;

  钨-金属间化合物,目前合成的有W-7%Ni-Fe-Al,该合金烧结密度达96%,平均晶粒尺寸为7μm,在动态压缩试验中,显示了绝热剪切特征;

  钨锰合金,有90W-Ni-Mn和95W-5Mn两种,烧结密度达95%以上,在动态试验中,均显示了绝热剪切特征。

  (2)改进穿杆结构,用结构自锐来替代材料本身的自锐

  下图所示为一种具有结构自锐能力的组合式侵彻体。其外层的钨合金管包覆内层的碳化钨弹芯构成。

组合杆式侵彻体结构示意


组合杆弹体头部在不同时刻侵彻形状图


  可以看到,在改进了结构之后,钨合金也同样可以“自锐”。不过,相对于贫铀弹芯合金仍然有差距。

  组合式结构自锐弹芯相较于改善材料性能的单杆式弹芯,工序更少、成本更低。目前这项技术已经应用在我国新型坦克炮用尾翼稳定脱壳穿甲弹上。

  钨纤维复合材料也是一种具有结构自锐的构型。例如使用锆合金玻璃内包钨丝束的结构,该材料虽然密度小于对比试验的95W钨合金,但在使用弹道炮进行对比实验时,其侵彻能力反而更高。

W纤维-ZrTiCuNiBe金属玻璃基复合材料弹芯侵彻效果图


  图6中上方为完整的弹芯,下方位试验后从靶板上回收的弹芯残段。可见,该复合材料弹芯并没有形成“蘑菇头”。

  贫铀合金和钨合金有各自的性能优势,铀-钨复合也是一个发展趋势。另外,基于复合材料的优良性能,目前还开发出了一些用于穿甲弹弹体的贫铀基复合材料。

  目前,由常规火炮发射的穿甲弹初速依然有限,在主战坦克的典型交战距离 2000m或更远距离,穿甲弹的着速仍然小于 2000m/s,所以在对RHA的穿透力上,贫铀合金比钨合金仍具有优势。

  随着新型装药技术、液体发射装药、电热化学炮、电磁发射技术等的发展,未来杆式穿甲弹的着靶速度将会超过2000m/s的临界点。

  当着速超过2000m/s时,惯性效应在侵彻中开始居支配地位,穿甲机理发生变化,材料之间行为差别的影响逐渐减少。这时穿杆的结构由连续杆变为分段间断杆后,穿甲性能更好。对于不同的着靶速度,分段间断杆存在着最佳的分段及段间间隙。

  最后需要特别说明的是,在可以查阅到的公开数据都是以对均质钢装甲(RHA)的穿透能力为比较标准。而当前的先进主战坦克(MBT)不仅采用了各种复合装甲(如约束式复合装甲),还可在外部加挂附加装甲、爆炸反应装甲(ERA)等,是不能简单认为在现有条件下贫铀合金就一定优于钨合金。

  参考篇目:

  1、钨纤维复合材料穿甲弹芯侵彻时的自锐现象 荣光 黄德武 爆炸与冲击 2009年7月第29卷第4期 文章编号:1001—1455(2009) 04-0351-05 国标学科代码:130·3530

  2、组合杆式穿甲弹的侵彻能力仿真分析 吴群彪 沈培辉 刘荣忠 系统仿真学报 2013年2月第25卷第2期 文章编号:1004-731X(2013)02-0367-04

  3、弹药概论 李向东 国防工业出版社 ISBN:7118036811

  4、穿甲力学 钱伟长 国防工业出版社 ISBN:15034.2753

  5、终点弹道学 (美)陆军装备部 国防工业出版社 ISBN:7-118-00065-5

  6、坦克装甲车辆设计(武器系统卷) 冯益柏 化学工业出版社 ISBN:978-7-122-21608-3

(西南交通大学国防教育协会供稿)


动科普

说到贫铀弹那我们就来说一说贫铀弹的历史吧。

早在75年就有很多拥有核燃料的国家在利用铀来做研究,研究的主体是“贫铀合金动能穿甲弹”听着名字就感觉是很高大上的东西,那实际上是什么呢?我们继续来看看,在76年左右美国就已经装备了这种子弹,但是自从“贫铀合金动能穿甲弹”横空出世以来世界各地都出现了“保守派”和“革新派”。“保守派”从各种方面去批评这种子弹,不管是从技术上、环保上甚至是从伦理上。而“革新派”又从各个方面去帮助这种技术的发展,技术上和资金上。

那么为什么这么多人痴迷于这种子弹的研发呢?“贫铀合金动能穿甲弹”的出世绝不是因为国库里的贫铀太多了,而是由于贫铀弹特别优秀的穿深,贫铀合金穿甲弹和它相同型号的钨合金穿甲弹的穿甲性能优秀百分之十到百分之二十。贫铀合金穿甲弹还有一个特点,就是穿甲后燃烧的特性,这一点无疑是给贫铀弹加了很多附加分,由于这个特性穿甲破甲的效果更加的好了,这种燃烧是不加任何燃烧剂的使之成为了唯一不用加燃烧剂就可以燃烧的弹种。

那接下来我们来分析下贫铀弹是否能用于制造战舰穿甲弹的弹芯或披甲。就我个人的观点来看是不可以的,因为贫铀弹具有放射性元素存在,虽然这种子弹的穿甲效能很高但还是掩盖不了它会污染环境,在这里我们应该想到地球只有一个破坏了污染了可就没有第二个地球在供我们污染了。所以战争垃圾和战争污染是在所有国家都很头疼的问题。那用来做战舰的穿甲弹的弹芯或披甲是不可行的。即使打到战舰上没有危害但是也不可能打这么准吧,多多少少会有一些进入海洋中对海洋造成污染。


贞观防务

贫铀可以用于制造战舰穿甲弹,但鉴于现代战舰一般不会象二战或之前那样用重型舰炮交战,而是用反舰导弹远距离攻击,强调机动性,装甲并不厚重,因此主炮用弹不会过分强调穿甲性能,但小口径弹药为了达到一定的侵彻威力倒会采用贫铀弹。如美国密集阵6管20mm口径近防炮就配备贫铀弹。


分享到:


相關文章: