DeepMind人工智能视觉系统已经发展到了哪个阶段?

cnBeta

外媒报道称,谷歌母公司 Alphabet 旗下人工智能子公司 DeepMind 了解人类世界的方式,刚刚又前进了一大步。

此前,该公司曾开发过一套教 AI 如何万视频游戏的系统。现在,它可以更好地“看到”并理解空间与环境,由此登上了不少媒体的头条。

据悉,DeepMind 的科学家们构建了一套人工智能视觉系统,其能够基于一张 2D 照片,来推断出一个 3D 场景模型。

【DeepMind 研究科学家 Ali Eslami 教授】

在近日出版的《科学》(Science)期刊上,扎根伦敦的 DeepMind 公布了这套名为《生成查询网络》的新系统的一些细节。

此外,研究人员在官方博客上解释了"系统是如何从不同的角度拍摄一个场景,并建立 3D 视图"的:

当下最先进的视觉识别系统,是通过使用大量由人类产生的、带注释的图像来训练的。

获取这些数据,是一个相当昂贵且费时的过程,因其需要人们在数据集中的每个场景里,标记某个对象的方方面面。

结果就是,通常只有总体内容的一小部分场景被捕获,这就对使用这些数据进行培训的 AI 视觉系统造成了限制。

【生成查询网络(Generative Query Networks)的图解】

当我们在现实世界中开发更复杂的机器时,我们希望它们能充分了解周围环境,比如:

最近的表面在哪里?沙发的材质是哪种?阴影是哪里的光源产生的?电灯的开关可能在哪里?

【AI 观察与神经渲染 - 动图演示】

与死板的老方法不同,这种方式类似于鼓励人工智能系统进行想象:

那样即便没有相关学习经验或知识,机器也可以处理很多新鲜事物,甚至用来猜测这个世界。

它们需要被教导如何去想象,而根据其所‘见到’的信息来猜测,似乎是一种不错的方法。

虽然听起来有点可怕,但能让机器学习变得更接近人类的感觉,也算是一项重大的突破了。

【视频介绍】

《Generative Query Networks》

【视频地址】

https://v.youku.com/v_show/id_XMzY2Nzc0NTAzNg==.html


分享到:


相關文章: