多个角度全方位带你看透 Java 线程池(附学习参考思路)

本文从多个角度全方位解析Java线程池的前世今生;

文中用到的参考资料有《Java 并发编程实战》、《Java 并发编程的艺术》、《Java多线程编程核心技术》

多个角度全方位带你看透 Java 线程池(附学习参考思路)

需要以上这三份文档的朋友可以私信我“资料”免费获取!

一、简介

什么是线程池

线程池是一种多线程处理形式,处理过程中将任务添加到队列,然后在创建线程后自动启动这些任务。

为什么要用线程池

如果并发请求数量很多,但每个线程执行的时间很短,就会出现频繁的创建和销毁线程。如此一来,会大大降低系统的效率,可能频繁创建和销毁线程的时间、资源开销要大于实际工作的所需。

正是由于这个问题,所以有必要引入线程池。使用 线程池的好处 有以下几点:

  • 降低资源消耗 - 通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
  • 提高响应速度 - 当任务到达时,任务可以不需要等到线程创建就能立即执行。
  • 提高线程的可管理性 - 线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。但是要做到合理的利用线程池,必须对其原理了如指掌。

二、Executor 框架

Executor 框架是一个根据一组执行策略调用,调度,执行和控制的异步任务的框架,目的是提供一种将”任务提交”与”任务如何运行”分离开来的机制。

核心 API 概述

Executor 框架核心 API 如下:

  • Executor - 运行任务的简单接口。
  • ExecutorService - 扩展了 Executor 接口。扩展能力:支持有返回值的线程;支持管理线程的生命周期。
  • ScheduledExecutorService - 扩展了 ExecutorService 接口。扩展能力:支持定期执行任务。
  • AbstractExecutorService - ExecutorService 接口的默认实现。
  • ThreadPoolExecutor - Executor 框架最核心的类,它继承了 AbstractExecutorService 类。
  • ScheduledThreadPoolExecutor - ScheduledExecutorService 接口的实现,一个可定时调度任务的线程池。
  • Executors - 可以通过调用 Executors 的静态工厂方法来创建线程池并返回一个 ExecutorService 对象。
多个角度全方位带你看透 Java 线程池(附学习参考思路)


Executor

Executor 接口中只定义了一个 execute 方法,用于接收一个 Runnable 对象。

<code>public interface Executor {    void execute(Runnable command);}/<code>

ExecutorService

ExecutorService 接口继承了 Executor 接口,它还提供了 invokeAll、invokeAny、shutdown、submit 等方法。

<code>public interface ExecutorService extends Executor {    void shutdown();    List<runnable> shutdownNow();    boolean isShutdown();    boolean isTerminated();    boolean awaitTermination(long timeout, TimeUnit unit)        throws InterruptedException;     Future submit(Callable task);     Future submit(Runnable task, T result);    Future> submit(Runnable task);     List<future>> invokeAll(Collection extends Callable> tasks)        throws InterruptedException;     List<future>> invokeAll(Collection extends Callable> tasks,                                  long timeout, TimeUnit unit)        throws InterruptedException;     T invokeAny(Collection extends Callable> tasks)        throws InterruptedException, ExecutionException;     T invokeAny(Collection extends Callable> tasks,                    long timeout, TimeUnit unit)        throws InterruptedException, ExecutionException, TimeoutException;}/<future>/<future>/<runnable>/<code>

从其支持的方法定义,不难看出:相比于 Executor 接口,ExecutorService 接口主要的扩展是:

  • 支持有返回值的线程 - sumbit、invokeAll、invokeAny 方法中都支持传入Callable 对象。
  • 支持管理线程生命周期 - shutdown、shutdownNow、isShutdown 等方法。

ScheduledExecutorService

ScheduledExecutorService 接口扩展了 ExecutorService 接口。

它除了支持前面两个接口的所有能力以外,还支持定时调度线程。

<code>public interface ScheduledExecutorService extends ExecutorService {    public ScheduledFuture> schedule(Runnable command,                                       long delay, TimeUnit unit);    public  ScheduledFuture schedule(Callable callable,                                           long delay, TimeUnit unit);    public ScheduledFuture> scheduleAtFixedRate(Runnable command,                                                  long initialDelay,                                                  long period,                                                  TimeUnit unit);    public ScheduledFuture> scheduleWithFixedDelay(Runnable command,                                                     long initialDelay,                                                     long delay,                                                     TimeUnit unit);}/<code>

其扩展的接口提供以下能力:

  • schedule 方法可以在指定的延时后执行一个 Runnable 或者 Callable 任务。
  • scheduleAtFixedRate 方法和 scheduleWithFixedDelay 方法可以按照指定时间间隔,定期执行任务。

三、ThreadPoolExecutor

java.uitl.concurrent.ThreadPoolExecutor 类是 Executor 框架中最核心的类。所以,本文将着重讲述一下这个类。

重要字段

ThreadPoolExecutor 有以下重要字段:

<code>private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));private static final int COUNT_BITS = Integer.SIZE - 3;private static final int CAPACITY   = (1 << COUNT_BITS) - 1;// runState is stored in the high-order bitsprivate static final int RUNNING    = -1 << COUNT_BITS;private static final int SHUTDOWN   =  0 << COUNT_BITS;private static final int STOP       =  1 << COUNT_BITS;private static final int TIDYING    =  2 << COUNT_BITS;private static final int TERMINATED =  3 << COUNT_BITS;/<code>

参数说明:

  • ctl - 用于控制线程池的运行状态和线程池中的有效线程数量。它包含两部分的信息:线程池的运行状态 (runState)线程池内有效线程的数量 (workerCount)可以看到,ctl 使用了 Integer 类型来保存,高 3 位保存 runState,低 29 位保存 workerCount。COUNT_BITS 就是 29,CAPACITY 就是 1 左移 29 位减 1(29 个 1),这个常量表示 workerCount 的上限值,大约是 5 亿。
  • 运行状态 - 线程池一共有五种运行状态:RUNNING - 运行状态。接受新任务,并且也能处理阻塞队列中的任务。SHUTDOWN - 关闭状态。不接受新任务,但可以处理阻塞队列中的任务。在线程池处于 RUNNING 状态时,调用 shutdown 方法会使线程池进入到该状态。finalize 方法在执行过程中也会调用 shutdown 方法进入该状态。STOP - 停止状态。不接受新任务,也不处理队列中的任务。会中断正在处理任务的线程。在线程池处于 RUNNING 或 SHUTDOWN 状态时,调用 shutdownNow 方法会使线程池进入到该状态。TIDYING - 整理状态
    。如果所有的任务都已终止了,workerCount (有效线程数) 为 0,线程池进入该状态后会调用 terminated 方法进入 TERMINATED 状态。TERMINATED - 已终止状态。在 terminated 方法执行完后进入该状态。默认 terminated 方法中什么也没有做。进入 TERMINATED 的条件如下:线程池不是 RUNNING 状态;线程池状态不是 TIDYING 状态或 TERMINATED 状态;如果线程池状态是 SHUTDOWN 并且 workerQueue 为空;workerCount 为 0;设置 TIDYING 状态成功。
多个角度全方位带你看透 Java 线程池(附学习参考思路)


构造方法

ThreadPoolExecutor 有四个构造方法,前三个都是基于第四个实现。第四个构造方法定义如下:

<code>public ThreadPoolExecutor(int corePoolSize,                              int maximumPoolSize,                              long keepAliveTime,                              TimeUnit unit,                              BlockingQueue<runnable> workQueue,                              ThreadFactory threadFactory,                              RejectedExecutionHandler handler) {/<runnable>/<code>

参数说明:

  • corePoolSize - 核心线程数量。当有新任务通过 execute 方法提交时 ,线程池会执行以下判断:如果运行的线程数少于 corePoolSize,则创建新线程来处理任务,即使线程池中的其他线程是空闲的。如果线程池中的线程数量大于等于 corePoolSize 且小于 maximumPoolSize,则只有当 workQueue 满时才创建新的线程去处理任务;如果设置的 corePoolSize 和 maximumPoolSize 相同,则创建的线程池的大小是固定的。这时如果有新任务提交,若 workQueue 未满,则将请求放入 workQueue 中,等待有空闲的线程去从 workQueue 中取任务并处理;如果运行的线程数量大于等于 maximumPoolSize,这时如果 workQueue 已经满了,则使用 handler 所指定的策略来处理任务;所以,任务提交时,判断的顺序为 corePoolSize => workQueue => maximumPoolSize。
  • maximumPoolSize - 最大线程数量。如果队列满了,并且已创建的线程数小于最大线程数,则线程池会再创建新的线程执行任务。值得注意的是:如果使用了无界的任务队列这个参数就没什么效果。
  • keepAliveTime:线程保持活动的时间。当线程池中的线程数量大于 corePoolSize 的时候,如果这时没有新的任务提交,核心线程外的线程不会立即销毁,而是会等待,直到等待的时间超过了 keepAliveTime。所以,如果任务很多,并且每个任务执行的时间比较短,可以调大这个时间,提高线程的利用率。
  • unit - keepAliveTime 的时间单位。有 7 种取值。可选的单位有天(DAYS),小时(HOURS),分钟(MINUTES),毫秒(MILLISECONDS),微秒(MICROSECONDS, 千分之一毫秒)和毫微秒(NANOSECONDS, 千分之一微秒)。
  • workQueue - 等待执行的任务队列。用于保存等待执行的任务的阻塞队列。 可以选择以下几个阻塞队列。ArrayBlockingQueue - 有界阻塞队列。此队列是基于数组的先进先出队列(FIFO)。此队列创建时必须指定大小。LinkedBlockingQueue - 无界阻塞队列。此队列是基于链表的先进先出队列(FIFO)。如果创建时没有指定此队列大小,则默认为 Integer.MAX_VALUE。吞吐量通常要高于 ArrayBlockingQueue。使用 LinkedBlockingQueue 意味着: maximumPoolSize 将不起作用,线程池能创建的最大线程数为 corePoolSize,因为任务等待队列是无界队列。Executors.newFixedThreadPool 使用了这个队列。SynchronousQueue -
    不会保存提交的任务,而是将直接新建一个线程来执行新来的任务。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态。吞吐量通常要高于 LinkedBlockingQueue。Executors.newCachedThreadPool 使用了这个队列。PriorityBlockingQueue - 具有优先级的无界阻塞队列
  • threadFactory - 线程工厂。可以通过线程工厂给每个创建出来的线程设置更有意义的名字。
  • handler - 饱和策略。它是 RejectedExecutionHandler 类型的变量。当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略处理提交的新任务。线程池支持以下策略:AbortPolicy - 丢弃任务并抛出异常。这也是默认策略。DiscardPolicy - 丢弃任务,但不抛出异常。DiscardOldestPolicy - 丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)。CallerRunsPolicy - 只用调用者所在的线程来运行任务。如果以上策略都不能满足需要,也可以通过实现 RejectedExecutionHandler 接口来定制处理策略。如记录日志或持久化不能处理的任务。

execute 方法

默认情况下,创建线程池之后,线程池中是没有线程的,需要提交任务之后才会创建线程。

提交任务可以使用 execute 方法,它是 ThreadPoolExecutor 的核心方法,通过这个方法可以向线程池提交一个任务,交由线程池去执行

execute 方法工作流程如下:

  1. 如果 workerCount < corePoolSize,则创建并启动一个线程来执行新提交的任务;
  2. 如果 workerCount >= corePoolSize,且线程池内的阻塞队列未满,则将任务添加到该阻塞队列中;
  3. 如果 workerCount >= corePoolSize && workerCount < maximumPoolSize,且线程池内的阻塞队列已满,则创建并启动一个线程来执行新提交的任务;
  4. 如果workerCount >= maximumPoolSize,并且线程池内的阻塞队列已满,则根据拒绝策略来处理该任务, 默认的处理方式是直接抛异常。
多个角度全方位带你看透 Java 线程池(附学习参考思路)


其他重要方法

在 ThreadPoolExecutor 类中还有一些重要的方法:

  • submit - 类似于 execute,但是针对的是有返回值的线程。submit 方法是在 ExecutorService 中声明的方法,在 AbstractExecutorService 就已经有了具体的实现。ThreadPoolExecutor 直接复用 AbstractExecutorService 的 submit 方法。
  • shutdown - 不会立即终止线程池,而是要等所有任务缓存队列中的任务都执行完后才终止,但再也不会接受新的任务。将线程池切换到 SHUTDOWN 状态;并调用 interruptIdleWorkers 方法请求中断所有空闲的 worker;最后调用 tryTerminate 尝试结束线程池。
  • shutdownNow - 立即终止线程池,并尝试打断正在执行的任务,并且清空任务缓存队列,返回尚未执行的任务。与 shutdown 方法类似,不同的地方在于:设置状态为 STOP;中断所有工作线程,无论是否是空闲的;取出阻塞队列中没有被执行的任务并返回。
  • isShutdown - 调用了 shutdown 或 shutdownNow 方法后,isShutdown 方法就会返回 true。
  • isTerminaed - 当所有的任务都已关闭后,才表示线程池关闭成功,这时调用 isTerminaed 方法会返回 true。
  • setCorePoolSize - 设置核心线程数大小。
  • setMaximumPoolSize - 设置最大线程数大小。
  • getTaskCount - 线程池已经执行的和未执行的任务总数;
  • getCompletedTaskCount - 线程池已完成的任务数量,该值小于等于 taskCount;
  • getLargestPoolSize - 线程池曾经创建过的最大线程数量。通过这个数据可以知道线程池是否满过,也就是达到了 maximumPoolSize;
  • getPoolSize - 线程池当前的线程数量;
  • getActiveCount - 当前线程池中正在执行任务的线程数量。

使用示例

<code>public class ThreadPoolExecutorDemo {    public static void main(String[] args) {        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(5, 10, 500, TimeUnit.MILLISECONDS,            new LinkedBlockingQueue<runnable>(),            Executors.defaultThreadFactory(),            new ThreadPoolExecutor.AbortPolicy());        for (int i = 0; i < 100; i++) {            threadPoolExecutor.execute(new MyThread());            String info = String.format("线程池中线程数目:%s,队列中等待执行的任务数目:%s,已执行玩别的任务数目:%s",                threadPoolExecutor.getPoolSize(),                threadPoolExecutor.getQueue().size(),                threadPoolExecutor.getCompletedTaskCount());            System.out.println(info);        }        threadPoolExecutor.shutdown();    }    static class MyThread implements Runnable {        @Override        public void run() {            System.out.println(Thread.currentThread().getName() + " 执行");        }    }}/<runnable>/<code>

四、Executors

JDK 的 Executors 类中提供了几种具有代表性的线程池,这些线程池 都是基于 ThreadPoolExecutor 的定制化实现

在实际使用线程池的场景中,我们往往不是直接使用 ThreadPoolExecutor ,而是使用 JDK 中提供的具有代表性的线程池实例。

newSingleThreadExecutor

创建一个单线程的线程池

只会创建唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。 如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它

单工作线程最大的特点是:可保证顺序地执行各个任务

示例:

<code>public class SingleThreadExecutorDemo {    public static void main(String[] args) {        ExecutorService executorService = Executors.newSingleThreadExecutor();        for (int i = 0; i < 100; i++) {            executorService.execute(new Runnable() {                @Override                public void run() {                    System.out.println(Thread.currentThread().getName() + " 执行");                }            });        }        executorService.shutdown();    }}/<code>

newFixedThreadPool

创建一个固定大小的线程池

每次提交一个任务就会新创建一个工作线程,如果工作线程数量达到线程池最大线程数,则将提交的任务存入到阻塞队列中

FixedThreadPool 是一个典型且优秀的线程池,它具有线程池提高程序效率和节省创建线程时所耗的开销的优点。但是,在线程池空闲时,即线程池中没有可运行任务时,它不会释放工作线程,还会占用一定的系统资源。

示例:

<code>public class FixedThreadPoolDemo {    public static void main(String[] args) {        ExecutorService executorService = Executors.newFixedThreadPool(3);        for (int i = 0; i < 100; i++) {            executorService.execute(new Runnable() {                @Override                public void run() {                    System.out.println(Thread.currentThread().getName() + " 执行");                }            });        }        executorService.shutdown();    }}/<code>

newCachedThreadPool

创建一个可缓存的线程池

  • 如果线程池长度超过处理任务所需要的线程数,就会回收部分空闲的线程;
  • 如果长时间没有往线程池中提交任务,即如果工作线程空闲了指定的时间(默认为 1 分钟),则该工作线程将自动终止。终止后,如果你又提交了新的任务,则线程池重新创建一个工作线程。
  • 此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说 JVM)能够创建的最大线程大小。 因此,使用 CachedThreadPool时,一定要注意控制任务的数量,否则,由于大量线程同时运行,很有会造成系统瘫痪。

示例:

<code>public class CachedThreadPoolDemo {    public static void main(String[] args) {        ExecutorService executorService = Executors.newCachedThreadPool();        for (int i = 0; i < 100; i++) {            executorService.execute(new Runnable() {                @Override                public void run() {                    System.out.println(Thread.currentThread().getName() + " 执行");                }            });        }        executorService.shutdown();    }}/<code>

newScheduleThreadPool

创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。

<code>public class ScheduledThreadPoolDemo {    public static void main(String[] args) {        schedule();        scheduleAtFixedRate();    }    private static void schedule() {        ScheduledExecutorService executorService = Executors.newScheduledThreadPool(5);        for (int i = 0; i < 100; i++) {            executorService.schedule(new Runnable() {                @Override                public void run() {                    System.out.println(Thread.currentThread().getName() + " 执行");                }            }, 1, TimeUnit.SECONDS);        }        executorService.shutdown();    }    private static void scheduleAtFixedRate() {        ScheduledExecutorService executorService = Executors.newScheduledThreadPool(5);        for (int i = 0; i < 100; i++) {            executorService.scheduleAtFixedRate(new Runnable() {                @Override                public void run() {                    System.out.println(Thread.currentThread().getName() + " 执行");                }            }, 1, 1, TimeUnit.SECONDS);        }        executorService.shutdown();    }}/<code>

关注我,后续更多干货奉上!


分享到:


相關文章: