讓面試官滿意的排序算法(圖文解析)

讓面試官滿意的排序算法(圖文解析)

讓面試官滿意的排序算法(圖文解析)


  • 這種排序算法能夠讓面試官面露微笑
  • 這種排序算法集各排序算法之大成
  • 這種排序算法邏輯性十足
  • 這種排序算法能夠展示自己對Java底層的瞭解

這種排序算法出自Vladimir Yaroslavskiy、Jon Bentley和Josh Bloch三位大牛之手,它就是JDK的排序算法——java.util.DualPivotQuicksort(雙支點快排)

DualPivotQuicksort

先看一副邏輯圖(如有錯誤請大牛在評論區指正)

讓面試官滿意的排序算法(圖文解析)

插排指的是改進版插排——哨兵插排

快排指的是改進版快排——雙支點快排

DualPivotQuickSort沒有Object數組排序的邏輯,此邏輯在Arrays中,好像是歸併+Tim排序

圖像應該很清楚:對於不同的數據類型,Java有不同的排序策略:

  • byte、short、char 他們的取值範圍有限,使用計數排序佔用的空間也不過256/65536個單位,只要排序的數量不是特別少(有一個計數排序閾值,低於這個閾值的話就沒有不要用空間換時間了),都應使用計數排序
  • int、long、float、double 他們的取值範圍非常的大,不適合使用計數排序
  • float和double 他們又有特殊情況: NAN(not a number),NAN不等於任何數字,甚至不等於自己 +0.0,-0.0
    ,float和double無法精確表示十進制小數,我們所看到的十進制小數其實都是取得近似值,因而會有+0.0(接近0的正浮點數)和-0.0(接近0的負浮點數),在排序流程中統一按0來處理,因而最後要調整一下-0.0和+0.0的位置關係
  • Object

計數排序

計數排序是以空間換時間的排序算法,它時間複雜度O(n),空間複雜度O(m)(m為排序數值可能取值的數量),只有在範圍較小的時候才應該考慮計數排序

(源碼以short為例)

<code>int[] count = new int[NUM_SHORT_VALUES]; //1 << 16 = 65536,即short的可取值數量

//計數,left和right為數組要排序的範圍的左界和右界
//注意,直接把
for (int i = left - 1; ++i <= right;count[a[i] - Short.MIN_VALUE]++);

//排序
for (int i = NUM_SHORT_VALUES, k = right + 1; k > left; ) {
while (count[--i] == 0);
short value = (short) (i + Short.MIN_VALUE);
int s = count[i];

do {
a[--k] = value;
} while (--s > 0);
}/<code>


哨兵插排

當數組元素較少時,時間O(n^2^)和O(log~n~)其實相差無幾,而插排的空間佔用率要少於快排和歸併排序,因而當數組元素較少時( 插排閾值),優先使用插排>

哨兵插排是對插排的優化,原插排每次取一個值進行遍歷插入,而哨兵插排則取兩個,較大的一個(小端在前的排序)作為哨兵,當哨兵遍歷到自己的位置時,另一個值可以直接從哨兵當前位置開始遍歷,而不用再重頭遍歷

讓面試官滿意的排序算法(圖文解析)

只畫了靜態圖,如果有好的繪製Gif的工具請在評論區告訴我哦

我們來看一下源碼:

<code>if (leftmost) {
//傳統插排(無哨兵Sentinel)
//遍歷
//循環向左比較( for (int i = left, j = i; i < right; j = ++i) {
int ai = a[i + 1];
while (ai < a[j]) {
a[j + 1] = a[j];
if (j-- == left) {
break;
}
}
a[j + 1] = ai;
}

//哨兵插排
} else {
//如果一開始就是排好序的——直接返回
do {
if (left >= right) {
return;
}
} while (a[++left] >= a[left - 1]);

//以兩個為單位遍歷,大的元素充當哨兵,以減少小的元素循環向左比較的範圍
for (int k = left; ++left <= right; k = ++left) {
int a1 = a[k], a2 = a[left];

if (a1 < a2) {
a2 = a1; a1 = a[left];
}
while (a1 < a[--k]) {
a[k + 2] = a[k];
}
a[++k + 1] = a1;


while (a2 < a[--k]) {
a[k + 1] = a[k];
}
a[k + 1] = a2;
}
//確保最後一個元素被排序
int last = a[right];

while (last < a[--right]) {
a[right + 1] = a[right];
}
a[right + 1] = last;
}
return;/<code>


雙支點快排

重頭戲:雙支點快排!

快排雖然穩定性不如歸併排序,但是它不用複製來複制去,省去了一段數組的空間,在數組元素較少的情況下穩定性影響也會下降(>插排閾值 , 快排閾值),優先使用快排>

雙支點快排在原有的快排基礎上,多加一個支點,左右共進,效率提升

看圖:

  1. 第一步,取支點
<code>    ![](https://chengweijun.oss-cn-hangzhou.aliyuncs.com/img/雙支點快排1.png)/<code>
<code>    > 注意:如果5個節點有相等的任兩個節點,說明數據不夠均勻,那就要使用單節點快排/<code> 
  1. 快排
<code>    ![](https://chengweijun.oss-cn-hangzhou.aliyuncs.com/img/雙支點快排2.png)/<code>

源碼(int為例,這麼長估計也沒人看)

<code>// Inexpensive approximation of length / 7 
// 快排閾值是286 其7分之一小於等於1/8+1/64+1
int seventh = (length >> 3) + (length >> 6) + 1;

// 獲取分成7份的五個中間點
int e3 = (left + right) >>> 1; // The midpoint
int e2 = e3 - seventh;
int e1 = e2 - seventh;
int e4 = e3 + seventh;
int e5 = e4 + seventh;

// 保證中間點的元素從小到大排序
if (a[e2] < a[e1]) {
int t = a[e2]; a[e2] = a[e1]; a[e1] = t; }

if (a[e3] < a[e2]) {
int t = a[e3]; a[e3] = a[e2]; a[e2] = t;
if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
}
if (a[e4] < a[e3]) {
int t = a[e4]; a[e4] = a[e3]; a[e3] = t;
if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
}
}
if (a[e5] < a[e4]) {
int t = a[e5]; a[e5] = a[e4]; a[e4] = t;
if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t;
if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t;
if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; }
}
}
}

// Pointers

int less = left; // The index of the first element of center part
int great = right; // The index before the first element of right part

//點彼此不相等——分三段快排,否則分兩段
if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
/*
* Use the second and fourth of the five sorted elements as pivots.
* These values are inexpensive approximations of the first and
* second terciles of the array. Note that pivot1 <= pivot2.
*/
int pivot1 = a[e2];
int pivot2 = a[e4];

/*
* The first and the last elements to be sorted are moved to the
* locations formerly occupied by the pivots. When partitioning
* is complete, the pivots are swapped back into their final
* positions, and excluded from subsequent sorting.
*/
a[e2] = a[left];
a[e4] = a[right];

while (a[++less] < pivot1);
while (a[--great] > pivot2);

/*
* Partitioning:
*
* left part center part right part
* +--------------------------------------------------------------+
* | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 |
* +--------------------------------------------------------------+
* ^ ^ ^
* | | |
* less k great
*/
outer:
for (int k = less - 1; ++k <= great; ) {
int ak = a[k];
if (ak < pivot1) { // Move a[k] to left part
a[k] = a[less];
/*
* Here and below we use "a[i] = b; i++;" instead
* of "a[i++] = b;" due to performance issue.
*/
a[less] = ak;
++less;
} else if (ak > pivot2) { // Move a[k] to right part
while (a[great] > pivot2) {

if (great-- == k) {
break outer;
}
}
if (a[great] < pivot1) { // a[great] <= pivot2
a[k] = a[less];
a[less] = a[great];
++less;
} else { // pivot1 <= a[great] <= pivot2
a[k] = a[great];
}
/*
* Here and below we use "a[i] = b; i--;" instead
* of "a[i--] = b;" due to performance issue.
*/
a[great] = ak;
--great;
}
}

// Swap pivots into their final positions
a[left] = a[less - 1]; a[less - 1] = pivot1;
a[right] = a[great + 1]; a[great + 1] = pivot2;

// Sort left and right parts recursively, excluding known pivots
sort(a, left, less - 2, leftmost);
sort(a, great + 2, right, false);

/*
* If center part is too large (comprises > 4/7 of the array),
* swap internal pivot values to ends.
*/
if (less < e1 && e5 < great) {
/*
* Skip elements, which are equal to pivot values.
*/
while (a[less] == pivot1) {
++less;
}

while (a[great] == pivot2) {
--great;
}

/*
* Partitioning:
*
* left part center part right part
* +----------------------------------------------------------+
* | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 |

* +----------------------------------------------------------+
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (*, less) == pivot1
* pivot1 < all in [less, k) < pivot2
* all in (great, *) == pivot2
*
* Pointer k is the first index of ?-part.
*/
outer:
for (int k = less - 1; ++k <= great; ) {
int ak = a[k];
if (ak == pivot1) { // Move a[k] to left part
a[k] = a[less];
a[less] = ak;
++less;
} else if (ak == pivot2) { // Move a[k] to right part
while (a[great] == pivot2) {
if (great-- == k) {
break outer;
}
}
if (a[great] == pivot1) { // a[great] < pivot2
a[k] = a[less];
/*
* Even though a[great] equals to pivot1, the
* assignment a[less] = pivot1 may be incorrect,
* if a[great] and pivot1 are floating-point zeros
* of different signs. Therefore in float and
* double sorting methods we have to use more
* accurate assignment a[less] = a[great].
*/
a[less] = pivot1;
++less;
} else { // pivot1 < a[great] < pivot2
a[k] = a[great];
}
a[great] = ak;
--great;
}
}
}

// Sort center part recursively
sort(a, less, great, false);

} else { // Partitioning with one pivot
/*
* Use the third of the five sorted elements as pivot.
* This value is inexpensive approximation of the median.
*/
int pivot = a[e3];

/*
* Partitioning degenerates to the traditional 3-way
* (or "Dutch National Flag") schema:
*
* left part center part right part
* +-------------------------------------------------+
* | < pivot | == pivot | ? | > pivot |
* +-------------------------------------------------+
* ^ ^ ^
* | | |
* less k great
*
* Invariants:
*
* all in (left, less) < pivot
* all in [less, k) == pivot
* all in (great, right) > pivot
*
* Pointer k is the first index of ?-part.
*/
for (int k = less; k <= great; ++k) {
if (a[k] == pivot) {
continue;
}
int ak = a[k];
if (ak < pivot) { // Move a[k] to left part
a[k] = a[less];
a[less] = ak;
++less;
} else { // a[k] > pivot - Move a[k] to right part
while (a[great] > pivot) {
--great;
}
if (a[great] < pivot) { // a[great] <= pivot
a[k] = a[less];
a[less] = a[great];
++less;
} else { // a[great] == pivot
/*
* Even though a[great] equals to pivot, the
* assignment a[k] = pivot may be incorrect,
* if a[great] and pivot are floating-point
* zeros of different signs. Therefore in float

* and double sorting methods we have to use
* more accurate assignment a[k] = a[great].
*/
a[k] = pivot;
}
a[great] = ak;
--great;
}
}

/*
* Sort left and right parts recursively.
* All elements from center part are equal
* and, therefore, already sorted.
*/
sort(a, left, less - 1, leftmost);
sort(a, great + 1, right, false);
}/<code>


歸併排序

你不會以為元素多(>快排閾值)就一定要用歸併了吧?

錯!元素多時確實對算法的穩定性有要求,可是如果這些元素能夠穩定快排呢?

開發JDK的大牛顯然考慮了這一點:他們在歸併排序之前對元素進行了是否能穩定快排的判斷:

  • 如果數組本身幾乎已經排好了(可以看出幾段有序數組的拼接),那還排什麼,理一理返回就行了
  • 如果出現連續33個相等元素——使用快排(實話說,我沒弄明白為什麼,有無大牛給我指點迷津?)
<code>//判斷結構是否適合歸併排序
int[] run = new int[MAX_RUN_COUNT + 1];
int count = 0; run[0] = left;

// Check if the array is nearly sorted
for (int k = left; k < right; run[count] = k) {
if (a[k] < a[k + 1]) { // ascending
while (++k <= right && a[k - 1] <= a[k]);
} else if (a[k] > a[k + 1]) { // descending
while (++k <= right && a[k - 1] >= a[k]);
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
}
} else {
//連續MAX_RUN_LENGTH(33)個相等元素,使用快排
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
if (--m == 0) {
sort(a, left, right, true);
return;
}
}
}

//count達到MAX_RUN_LENGTH,使用快排
if (++count == MAX_RUN_COUNT) {
sort(a, left, right, true);
return;
}
}

// Check special cases
// Implementation note: variable "right" is increased by 1.
if (run[count] == right++) { // The last run contains one element
run[++count] = right;
} else if (count == 1) { // The array is already sorted
return;
}/<code>

歸併排序源碼

<code>byte odd = 0;
for (int n = 1; (n <<= 1) < count; odd ^= 1);

// Use or create temporary array b for merging
int[] b; // temp array; alternates with a

int ao, bo; // array offsets from 'left'
int blen = right - left; // space needed for b
if (work == null || workLen < blen || workBase + blen > work.length) {
work = new int[blen];
workBase = 0;
}
if (odd == 0) {
System.arraycopy(a, left, work, workBase, blen);
b = a;
bo = 0;
a = work;
ao = workBase - left;
} else {
b = work;
ao = 0;
bo = workBase - left;
}

// Merging
for (int last; count > 1; count = last) {
for (int k = (last = 0) + 2; k <= count; k += 2) {
int hi = run[k], mi = run[k - 1];
for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
b[i + bo] = a[p++ + ao];
} else {
b[i + bo] = a[q++ + ao];
}
}
run[++last] = hi;
}
if ((count & 1) != 0) {
for (int i = right, lo = run[count - 1]; --i >= lo;
b[i + bo] = a[i + ao]
);
run[++last] = right;
}
int[] t = a; a = b; b = t;
int o = ao; ao = bo; bo = o;
}/<code>


技術不分領域,思想一脈相承


分享到:


相關文章: