圓周率乘以一個數能變成有理數麼?

he5he81238718


圓周率變成有理數

這個問題的腦洞確實不小,要了解這個問題,我們必須要從圓周率的π的根本說起,

π是圓中周長與直徑的比值。若要用計算公式來表示它,恐怕隨便一找成百上千個是不成問題的。

首先π不是有理數,這個證明比較早,π不可以用任何一個分數來表示。那麼π肯定就是個無理數了,它究竟是一個什麼樣子的無理數呢?它不是任何一個有理係數的多項式方程的根,這句話怎麼理解?我們見過很多的三次,五次方程的根,假設你可以找到這個方程的根式解,那麼我們一定會發現,這個根是由許多個不同次方根組合而成的。比如根號3,三次根號5等等,我們通常把這些數成為代數數。1882年,數學家林德曼證明了,π不會是任何有理係數多項式方程的根。也就是說,π已經超過了代數數的範疇了,於是我們給π起了一個更高大上的名字——超越數。

很明顯,超越數的段位要比無理數,有理數要高得多。回到這個問題的本質上來,讓π成一個數,使得這個數變成有理數?其實這個問題關鍵就在於怎麼構造這個乘數,那乾脆我們就×1/π好了,兩個數字互為倒數,當然乘出來就是有理數了。

好了,如果我們拋棄上面的小伎倆,用一種嚴肅的方式來考慮這個問題,你很容易也就發現,除了那些刻意構造的數之外,任何數和π相乘都不會是有理數。π雖然如此實實在在地存在,但是它彷彿就是不合群,不願意與那些普普通通的數字為伍,我是超越數,無論你怎麼操作,我還是超越數。。。


分享到:


相關文章: