星體的兩大極限

錢德拉塞卡極限,指白矮星的最高質量,約為3×10公斤,是太陽質量的1.44倍。這個極限是由錢德拉塞卡計算出的。計算的結果會依據原子核的結構和溫度而有些差異。


星體的兩大極限

1928年,一位印度研究生——蘇布拉馬尼揚·錢德拉塞卡乘船來英國劍橋跟英國天文學家阿瑟·愛丁頓爵士、學習。在他從印度來英的旅途中,錢德拉塞卡算出在耗盡所有燃料之後,多大的恆星可以繼續對抗自己的引力而維持自己。這個思想是說:當恆星變小時,物質粒子靠得非常近,而按照泡利的不相容原理,它們必須有非常不同的速度。這使得它們互相散開並企圖使恆星膨脹。一顆恆星可因引力作用和不相容原理引起的排斥力達到平衡而保持其半徑不變,正如在它的生命的早期引力被熱所平衡一樣。

然而,錢德拉塞卡意識到,不相容原理所能提供的排斥力有一個極限。恆星中的粒子的最大速度差被相對論限制為光速。這意味著恆星變得足夠緊緻之時,由不相容原理引起的排斥力就會比引力的作用小。錢德拉塞卡計算出:一個大約為太陽質量一倍半的冷的恆星不能支持自身以抵抗自己的引力,這質量稱為錢德拉塞卡極限。蘇聯科學家列夫·達維多維奇·蘭道幾乎在同時也得到了類似的發現。

奧本海默極限,指穩定中子星的質量上限。1936年﹐奧本海默等證明存在一個臨界質量,一顆熱核能源耗盡的星體﹐如果質量大於這個臨界質量﹐就不可能成為穩定的中子星,它要麼經過無限坍縮形成黑洞﹐要麼形成介於中子星與黑洞之間的其他類型的緻密星,這個臨界質量被稱為奧本海默極限。

1936年﹐奧本海默等首先討論了由簡併中子態物質構成的緻密星體﹐即中子星的平衡和穩定性。這種星體的性質﹐主要由自引力和簡併中子壓力二者之間的平衡決定。奧本海默極限即是中子星的質量上限,類似於白矮星質量上限的錢德拉塞卡極限。如上節所述,奧本海默和沃爾科夫得到的中子星質量上限約為0.7倍太陽質量,這在今天看來應該是錯誤的,當今的結果在1.5至3倍太陽質量之間。一般天體物理學家相信,除非有實際觀測的反例證實,中子星在超過這一極限時都會直接坍縮為黑洞。


星體的兩大極限

一顆熱核能源耗盡的星體﹐如果質量大於奧本海默極限﹐不可能成為穩定的中子星。它的一種可能歸宿是經過無限坍縮形成黑洞﹐另一種歸宿是形成介於中子星與黑洞之間的其他類型的緻密星。


分享到:


相關文章: