MapReduce知识整理

MapReduce概述

MapReduce定义

MapReduce是一个分布式运算程序的编程框架,是用户开发“基于Hadoop的数据分析应用”的核心框架。

MapReduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并运行在一个Hadoop集群上。

MapReduce优缺点

优点

1.MapReduce易于编程。

它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量廉价的PC机器上运行。也就是说你写一个分布式程序,跟写一个简单的串行程序是一模一样的。就是因为这个特点使得MapReduce编程变得非常流行。

2.良好的扩展性

当你的计算资源不能得到满足的时候,你可以通过简单的增加机器来扩展它的计算能力。

3.高容错性

MapReduce设计的初衷就是使程序能够部署在廉价的PC机器上,这就要求它具有很高的容错性。比如其中一台机器挂了,它可以把上面的计算任务转移到另外的一个节点上运行,不至于这个任务失败,而且这个过程不需要人工参与,而完全是Hadoop内部完成的。

4.适合PB级以上海量数据的离线处理

可以实现上千台服务器集群并发工作,提供数据处理能力。

缺点

1.不擅长实时计算

MapReduce无法像MySql一样,在毫秒或者秒内返回结果。

2.不擅长流式计算

流式计算的输入数据是动态的,而MapReduce的输入数据集是静态的,不能动态变化。这是因为MapReduce自身的设计特点决定了数据源必须是静态的。

3.不擅长DAG(有向图)计算

多个应用程序存在依赖关系,后一个应用程序的输入为前一个输出。在这种情况下,MapReduce并不能做,而是使用后,每个MapReduce作业的输出节过都会写入磁盘,会造成大量的磁盘IO,导致性能非常的低下。

MapReduce核心思想

MapReduce知识整理

1)分布式的运算程序往往需要分成至少2个阶段。

2)第一个阶段的MapTask并发实例,完全并行运行,互不相干。

3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。

4)MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行。

总结:分析WordCount数据流走向深入理解MapReduce核心思想。

MapReduce进程

一个完整的MapReduce程序在分布式运行时有三类实例进程:

1.MrAppMaster:负责整个程序的过程调度及状态协调。

2.MapTask:负责Map阶段的整个数据处理流程。

3.ReduceTask:负责Reduce阶段的整个数据处理流程。

官方WordCount源码

用反编译工具反编译源码,发现WordCount案例有Map类、Reduce类和驱动类。且数据的类型是Hadoop自身封装的序列化类型。

MapReduce知识整理

MapReduce编程规范

用户编写的程序分成三个部分:Mapper、Reducer和Driver。

1.Mapper阶段

(1)用户自定义的Mapper要继承自己的父类

(2)Mapper的输入数据是KV对的形式(KV的类型可自定义)

(3)Mapper中的业务逻辑写在map()方法中

(4) Mapper的输出数据是KV对的形式(KV的类型可自定义)

(5)map()方法(MapTask进程)对每一个调用一次

2.Reduce阶段

(1)用户自定义的Reducer要继承自己的分类

(2)Reducer的输入数据类型对应的Mapper的输出数据类型,也是KV

(3)Reducer的业务逻辑写在Reduce()方法中

(4)ReduceTask进程对每一组相同的组调用一次reduce()方法

3.Driver阶段

相当于YARN集群的客户端,用于提交我们整个程序到YARN集群,提交的是封装了MapReduce程序相关运行参数的job对象。

WordCount案例实操

1.需求

在给定的文本文件中统计输出每一个单词出现的总次数

(1)输入数据,hello.txt

(2)期望输出数据

<code>atguigu 2
banzhang 1
cls 2
hadoop 1
jiao 1
ss 2
xue 1/<code>

2.需求分析

按照MapReduce编程规范,分别编写Mapper,Reducer,Driver,

MapReduce知识整理

3.环境准备

(1)创建maven工程

(2)在pom.xml文件中添加如下依赖

<code>
		
			junit
			junit
			RELEASE
		
		
			org.apache.logging.log4j
			log4j-core
			2.8.2
		
		
			org.apache.hadoop
			hadoop-common
			2.7.2
		
		
			org.apache.hadoop
			hadoop-client
			2.7.2
		
		
			org.apache.hadoop
			hadoop-hdfs
			2.7.2
		
/<code>

(3)在项目的src/main/resources目录下,新建一个文件,命名为“log4j.properties”,在文件中填入。

<code>log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n/<code>

4.编写程序

(1)编写Mapper类

<code>import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class WordcountMapper extends Mapper{
	
	Text k = new Text();
	IntWritable v = new IntWritable(1);
	
	@Override
	protected void map(LongWritable key, Text value, Context context)	throws IOException, InterruptedException {
		
		// 1 获取一行
		String line = value.toString();
		
		// 2 切割
		String[] words = line.split(" ");
		
		// 3 输出
		for (String word : words) {
			
			k.set(word);
			context.write(k, v);
		}
	}
}/<code>

(2)编写Reducer类

<code>import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WordcountReducer extends Reducer{

int sum;
IntWritable v = new IntWritable();

	@Override
	protected void reduce(Text key, Iterable values,Context context) throws IOException, InterruptedException {
		
		// 1 累加求和
		sum = 0;
		for (IntWritable count : values) {
			sum += count.get();
		}
		
		// 2 输出
       v.set(sum);
		context.write(key,v);
	}
}/<code>

(3)编写Driver驱动类

<code>import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordcountDriver {

	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

		// 1 获取配置信息以及封装任务
		Configuration configuration = new Configuration();
		Job job = Job.getInstance(configuration);

		// 2 设置jar加载路径
		job.setJarByClass(WordcountDriver.class);

		// 3 设置map和reduce类
		job.setMapperClass(WordcountMapper.class);
		job.setReducerClass(WordcountReducer.class);

		// 4 设置map输出
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(IntWritable.class);

		// 5 设置最终输出kv类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);
		
		// 6 设置输入和输出路径
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));

		// 7 提交
		boolean result = job.waitForCompletion(true);

		System.exit(result ? 0 : 1);
	}
}/<code>

5.本地测试

(1)如果电脑系统是win7的就将win7的hadoop jar包解压到非中文路径,并在Windows环境上配置HADOOP_HOME环境变量。如果是电脑win10操作系统,就解压win10的hadoop jar包,并配置HADOOP_HOME环境变量。

注意:win8电脑和win10家庭版操作系统可能有问题,需要重新编译源码或者更改操作系统。

(2)在Eclipse/Idea上运行程序

6.集群上测试

(1)用maven打jar包,需要添加的打包插件依赖

注意:标记红颜色的部分需要替换为自己工程主类

<code>
		
			
				maven-compiler-plugin
				2.3.2
				
					1.8
					1.8
				
			
			
				maven-assembly-plugin 
				
					
						jar-with-dependencies
					
					
						
							com.atguigu.mr.WordcountDriver
						
					
				
				
					
						make-assembly
						package
						
							single
						
					
				
			
		
	/<code>

注意:如果工程上显示红叉。在项目上右键->maven->update project即可。

(1)将程序打成jar包,然后拷贝到Hadoop集群中

步骤详情:右键->Run as->maven install。等待编译完成就会在项目的target文件夹中生成jar包。如果看不到。在项目上右键-》Refresh,即可看到。修改不带依赖的jar包名称为wc.jar,并拷贝该jar包到Hadoop集群。

(2)启动Hadoop集群

(3)执行WordCount程序

<code>hadoop jar  wc.jar
 com.atguigu.wordcount.WordcountDriver /user/atguigu/input /user/atguigu/output/<code>

Hadoop序列化

序列化概述

序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储到磁盘(持久化)和网络传输。

反序列就是将收到字节序列(或其他数据传输协议)或者是磁盘的持久化数据,转换成内存中的对象。

为什么要序列化

一般来说,“活的”对象只生存在内存里,关机断电就没有了。而且“活的”对象只能由本地的进程使用,不能被发送到网络上的另外一台计算机。然而序列化可以存储“活的对象”,可以将“活的”对象发送到远程计算机。

为什么不用Java的序列化

Java的序列化是一个重量级序列化框架,一个对象被序列化后,会附带很多额外的信息(各种校验信息,Header,继承体系等),不便于在网络中高效传输。所以,Hadoop自己开发了一套序列化机制(Writable)。

Hadoop序列化特点:

(1)紧凑:高效使用存储空间

(2)快速:读写数据的额外开销小

(3)可扩展性:随着通信协议的升级而可升级

(4)支持多语言的交互

自定义bean对象实现序列化接口(Writable)

在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在Hadoop框架内部传递一个bean对象,那么该对象就需要实现序列化接口。

具体实现bean对象序列化步骤如下7步。

(1)必须实现Writable接口

(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造

<code>public FlowBean() {
	super();
}/<code>

(3)重写序列化方法

<code>@Override
public void write(DataOutput out) throws IOException {
	out.writeLong(upFlow);
	out.writeLong(downFlow);
	out.writeLong(sumFlow);
}/<code>

(4)重写反序列化方法

<code>@Override
public void readFields(DataInput in) throws IOException {
	upFlow = in.readLong();
	downFlow = in.readLong();
	sumFlow = in.readLong();
}/<code>

(5)注意反序列化的顺序和序列化的顺序完全一致

(6)要想把结果显示在文件中,需要重写toString(),可用”\t”分开,方便后续用。

(7)如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口,因为MapReduce框中的Shuffle过程要求对key必须能排序。

<code>@Override
public int compareTo(FlowBean o) {
	// 倒序排列,从大到小
	return this.sumFlow > o.getSumFlow() ? -1 : 1;
}/<code>

序列化案例实操

1. 需求

统计每一个手机号耗费的总上行流量、下行流量、总流量

(1)输入数据

phone_data.txt

(2)输入数据格式:

<code>7 13560436666 120.196.100.99 1116  954 200
id 手机号码 网络ip 上行流量  下行流量     网络状态码/<code>

(3)期望输出数据格式

<code>13560436666 		1116		      954 			2070
手机号码		    上行流量        下行流量		总流量/<code>

2.需求分析

MapReduce知识整理

3.编写MapReduce程序

(1)编写流量统计的Bean对象

<code>import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Writable;

// 1 实现writable接口
public class FlowBean implements Writable{

	private long upFlow;
	private long downFlow;
	private long sumFlow;
	
	//2  反序列化时,需要反射调用空参构造函数,所以必须有
	public FlowBean() {
		super();
	}

	public FlowBean(long upFlow, long downFlow) {
		super();
		this.upFlow = upFlow;
		this.downFlow = downFlow;
		this.sumFlow = upFlow + downFlow;
	}
	
	//3  写序列化方法
	@Override
	public void write(DataOutput out) throws IOException {
		out.writeLong(upFlow);
		out.writeLong(downFlow);
		out.writeLong(sumFlow);
	}
	
	//4 反序列化方法
	//5 反序列化方法读顺序必须和写序列化方法的写顺序必须一致
	@Override
	public void readFields(DataInput in) throws IOException {
		this.upFlow  = in.readLong();
		this.downFlow = in.readLong();
		this.sumFlow = in.readLong();
	}

	// 6 编写toString方法,方便后续打印到文本
	@Override
	public String toString() {
		return upFlow + "\t" + downFlow + "\t" + sumFlow;
	}

	public long getUpFlow() {
		return upFlow;
	}

	public void setUpFlow(long upFlow) {
		this.upFlow = upFlow;
	}

	public long getDownFlow() {
		return downFlow;
	}

	public void setDownFlow(long downFlow) {
		this.downFlow = downFlow;
	}

	public long getSumFlow() {
		return sumFlow;
	}

	public void setSumFlow(long sumFlow) {
		this.sumFlow = sumFlow;
	}
}/<code>

(2)编写Mapper类

<code>
		
			junit
			junit
			RELEASE
		
		
			org.apache.logging.log4j
			log4j-core
			2.8.2
		
		
			org.apache.hadoop
			hadoop-common
			2.7.2
		
		
			org.apache.hadoop
			hadoop-client
			2.7.2
		
		
			org.apache.hadoop
			hadoop-hdfs
			2.7.2
		
/<code>

(3)编写Reducer类

<code>log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n/<code>

(4)编写Driver驱动类

<code>import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FlowsumDriver {

	public static void main(String[] args) throws IllegalArgumentException, IOException, ClassNotFoundException, InterruptedException {
		
// 输入输出路径需要根据自己电脑上实际的输入输出路径设置
args = new String[] { "e:/input/inputflow", "e:/output1" };

		// 1 获取配置信息,或者job对象实例
		Configuration configuration = new Configuration();
		Job job = Job.getInstance(configuration);

		// 6 指定本程序的jar包所在的本地路径
		job.setJarByClass(FlowsumDriver.class);

		// 2 指定本业务job要使用的mapper/Reducer业务类
		job.setMapperClass(FlowCountMapper.class);
		job.setReducerClass(FlowCountReducer.class);

		// 3 指定mapper输出数据的kv类型
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(FlowBean.class);

		// 4 指定最终输出的数据的kv类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(FlowBean.class);
		
		// 5 指定job的输入原始文件所在目录
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));

		// 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
		boolean result = job.waitForCompletion(true);
		System.exit(result ? 0 : 1);
	}
}/<code>

MapReduce框架原理

InputFormat数据输入

MapReduce知识整理

切片与MapTask并行度决定机制

1.问题引出

MapTask的并行度决定Map阶段的任务处理并发度,进而影响到整个Job的处理速度。

思考:1G的数据,启动8个MapTask,可以提高集群的并发处理能力。那么1K的数据,也启动8个MapTask,会提高集群性能吗?MapTask并行任务是否越多越好呢?哪些因素影响了MapTask并行度?

2.MapTask并行度决定机制

数据块:Block是HDFS物理上把数据分成一块一块。

数据切片:数据切片只是在逻辑上对输入进行分片,并不会在磁盘上将其切分成片进行存储。

MapReduce知识整理

Job提交流程源码和切片源码详解

1.Job提交流程源码详解

<code>import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class WordcountMapper extends Mapper{
	
	Text k = new Text();
	IntWritable v = new IntWritable(1);
	
	@Override
	protected void map(LongWritable key, Text value, Context context)	throws IOException, InterruptedException {
		
		// 1 获取一行
		String line = value.toString();
		
		// 2 切割
		String[] words = line.split(" ");
		
		// 3 输出
		for (String word : words) {
			
			k.set(word);
			context.write(k, v);
		}
	}
}/<code>
MapReduce知识整理

FileInputFormat切片源码解析(input.getSplits(job))

(1)程序先找你数据存储的目录

(2)开始遍历处理(规范切片)目录下的每一个文件

(3)遍历第一个文件ss.txt

a)获取文件大小fs.sizeOf(ss.txt)

b)计算切片大小

computeSplitSize(Math.max(Math.mini(maxSize,blocksize)))=blocksize=128M

c)默认情况下,切片大小=blocksize

d)开始切,形成

第一个切片:ss.txt——0:128M

第二个切片ss.txt——128:256M

第三个切片ss.txt——256M:300M

(每次切片时,都要判断切完剩下的部分是否大于块的1.1倍,不大于1.1倍就划分一块切片)

e)将切片信息写到一个切片规划文件中

f)整个切片的核心过程在getSplit()方法中完成

g)InputSplit只记录了切片的元数据信息,比如起始位置,长度以及所在的节点列表等。

(4)提交切片规划文件到YARN上,YARN上的MrAppMaster就可以根据切片规划文件计算开启MapTask个数。

FileInputFormat切片机制

1.切片机制

(1)简单地按照文件的内容长度进行切片

(2)切片大小,默认等于Block大小

(3)切片时不考虑数据集整体,而是逐个针对每一个文件单独切片

2.案例分析

(1)输入数据有两个文件:

MapReduce知识整理

(2)经过FIleIputFormat的切片机制运算后,形成的切片信息如下:

MapReduce知识整理

FileInputFormat切片大小的参数配置

(1)源码中计算切片大小的公式

Math.max(minSize,Math.mini(MaxSize,blockSize));

mapreduce.input.fileinputformat.split.minisize=1 默认值为1

mapreduce.input.fileinputformat.split.maxsize=Long.MAXValue默认值Long.MAXValue。因此,默认情况下,切片大小=blocksize。

(2)切片大小设置

maxsize(切片最大值):参数如果调得比blockSize小,则会让切片变小,而且就等于配置的这个参数的值。

minsize(切片最小值):参数调的比blockSize大,则可以让切片变得比blockSize还大。

(2)获取切片信息API

<code>import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class WordcountReducer extends Reducer{

int sum;
IntWritable v = new IntWritable();

	@Override
	protected void reduce(Text key, Iterable values,Context context) throws IOException, InterruptedException {
		
		// 1 累加求和
		sum = 0;
		for (IntWritable count : values) {
			sum += count.get();
		}
		
		// 2 输出
       v.set(sum);
		context.write(key,v);
	}
}/<code>

CombineTextInputFormat切片机制

框架默认的TextInputFormat切片机制是对任务按文件规划切片,不管文件多小,都会是一个单独的切片,都会交给一个MapTask,这样如果有大量小文件,就会产生大量的MapTask,处理效率极其低下。

1、应用场景:

CombineTextInputFormat用于小文件过多的场景,它可以将多个小文件从逻辑上规划到一个切片中,这样,多个小文件就可以交给一个MapTask处理。

2、虚拟存储切片最大值设置

CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);// 4m

注意:虚拟存储切片最大值设置最好根据实际的小文件大小情况来设置具体的值。

3、切片机制

生成切片过程包括:虚拟存储过程和切片过程二部分。

MapReduce知识整理

(1)虚拟存储过程:

将输入目录下所有文件大小,依次和设置的setMaxInputSplitSize值比较,如果不大于设置的最大值,逻辑上划分一个块。如果输入文件大于设置的最大值且大于两倍,那么以最大值切割一块;当剩余数据大小超过设置的最大值且不大于最大值2倍,此时将文件均分成2个虚拟存储块(防止出现太小切片)。

例如setMaxInputSplitSize值为4M,输入文件大小为8.02M,则先逻辑上分成一个4M。剩余的大小为4.02M,如果按照4M逻辑划分,就会出现0.02M的小的虚拟存储文件,所以将剩余的4.02M文件切分成(2.01M和2.01M)两个文件。

(2)切片过程:

(a)判断虚拟存储的文件大小是否大于setMaxInputSplitSize值,大于等于则单独形成一个切片。

(b)如果不大于则跟下一个虚拟存储文件进行合并,共同形成一个切片。

(c)测试举例:有4个小文件大小分别为1.7M、5.1M、3.4M以及6.8M这四个小文件,则虚拟存储之后形成6个文件块,大小分别为:

1.7M,(2.55M、2.55M),3.4M以及(3.4M、3.4M)

最终会形成3个切片,大小分别为:(1.7+2.55)M,(2.55+3.4)M,(3.4+3.4)M

CombineTextInputFormat案例实操

1.需求

将输入的大量小文件合并成一个切片统一处理。

(1)输入数据

准备4个小文件

(2)期望

期望一个切片处理4个文件

2.实现过程

(1)不做任何处理,运行1.6节的WordCount案例程序,观察切片个数为4。


(2)在WordcountDriver中增加如下代码,运行程序,并观察运行的切片个数为3。

(a)驱动类中添加代码如下:

<code>// 如果不设置InputFormat,它默认用的是TextInputFormat.class
job.setInputFormatClass(CombineTextInputFormat.class);

//虚拟存储切片最大值设置4m
CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);/<code> 

(b)运行如果为3个切片。

MapReduce知识整理

(3)在WordcountDriver中增加如下代码,运行程序,并观察运行的切片个数为1。

(a)驱动中添加代码如下:

<code>// 如果不设置InputFormat,它默认用的是TextInputFormat.class
job.setInputFormatClass(CombineTextInputFormat.class);

//虚拟存储切片最大值设置20m
CombineTextInputFormat.setMaxInputSplitSize(job, 20971520);/<code>

(b)运行如果为1个切片。

MapReduce知识整理

FileInputFormat实现类

思考:在运行MapReduce程序时,输入文件格式包括:基于行的日志文件,二进制格式文件,数据库表等。那么,针对不同的数据类型,MapReduce是如何读取这些数据的呢?

FileInputFormat常见的接口实现类包括:TextInputFormat,KeyValueInputFormat,NLineInputFormat,CombineTextInputFormat和自定义InputFormat等。

1.TextInputFormat

TextInputFormat是默认的FileInputFormat实现类。按行读取每条记录。键是存储该行在整个文件中的起始字节偏移量,LongWritable类型。值是这样的内容,不包括任何行终止符(换行符和回车符),Text类型。

以下是一个示例,比如,一个分片包含了如下4条文本记录。

MapReduce知识整理

每条记录表为以下键/值对:

MapReduce知识整理

2.KeyValueTextInputFormat

每一行均为一条记录,被分隔符分割为key,value。可以通过在驱动类中设置

conf.set(Key ValueLineRecordReader.KEY_VALUE_SEPERATOR,"/t");来设定分隔符。

默认分隔符是tab(\t)。

以下是一个示例,输入是一个包含4条记录的分片。其中--->表示一个(水平方向的)制表符。

MapReduce知识整理

每条记录表示为以下键/值对:

MapReduce知识整理

此时的键是每行排在制表符之前的Text序列。

3.NLineInputFormat

如果使用NlineInputFormat,代表每个map进程处理的InputSplit不再按Block块去划分,而是按NlineInputFormat指定的行数N来划分。即输入文件的总行数/N=切片数,如果不整除,切片数=商+1。

以下是一个示例,仍然以上面的4行输入为例。

MapReduce知识整理

例如,如果N是2,则每个输入分片包含两行。开启2个MapTask。

MapReduce知识整理

这里的键和值与TextInputFormat生成的一样。

KeyValueTextInputFormat使用案例

1.需求

统计输入文件中每一行的第一个单词相同的行数。

(1)输入数据

<code>banzhang ni hao
xihuan hadoop banzhang
banzhang ni hao
xihuan hadoop banzhang/<code>

(2)期望结果数据

<code>banzhang	2
xihuan	2/<code>

2.需求分析

MapReduce知识整理

3.代码实现

(1)编写Mapper类

<code>import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class KVTextMapper extends Mapper{
	
// 1 设置value
   LongWritable v = new LongWritable(1);  
    
	@Override
	protected void map(Text key, Text value, Context context)
			throws IOException, InterruptedException {

// banzhang ni hao
        
        // 2 写出
        context.write(key, v);  
	}
}/<code>

(2)编写Reducer类

<code>import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class KVTextReducer extends Reducer{
	
    LongWritable v = new LongWritable();  
    
	@Override
	protected void reduce(Text key, Iterable values,	Context context) throws IOException, InterruptedException {
		
		 long sum = 0L;  

		 // 1 汇总统计
        for (LongWritable value : values) {  
            sum += value.get();  
        }
         
        v.set(sum);  
         
        // 2 输出
        context.write(key, v);  
	}
}/<code>

(3)编写Driver类

<code>import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.KeyValueLineRecordReader;
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class KVTextDriver {

	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
		
		Configuration conf = new Configuration();
		// 设置切割符
	conf.set(KeyValueLineRecordReader.KEY_VALUE_SEPERATOR, " ");
		// 1 获取job对象
		Job job = Job.getInstance(conf);
		
		// 2 设置jar包位置,关联mapper和reducer
		job.setJarByClass(KVTextDriver.class);
		job.setMapperClass(KVTextMapper.class);
    job.setReducerClass(KVTextReducer.class);
				
		// 3 设置map输出kv类型
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(LongWritable.class);

		// 4 设置最终输出kv类型
		job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(LongWritable.class);
		
		// 5 设置输入输出数据路径
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		
		// 设置输入格式
	  job.setInputFormatClass(KeyValueTextInputFormat.class);
		
		// 6 设置输出数据路径
		FileOutputFormat.setOutputPath(job, new Path(args[1]));
		
		// 7 提交job
		job.waitForCompletion(true);
	}
}/<code> 

NLineInputFormat使用案例

1.需求

对每个单词进行个数统计,要求根据每个输入文件的行数来规定输出多少个切片。此案例要求每三行放入一个切片中。

(1)输入数据

<code>banzhang ni hao
xihuan hadoop banzhang
banzhang ni hao
xihuan hadoop banzhang
banzhang ni hao
xihuan hadoop banzhang
banzhang ni hao
xihuan hadoop banzhang
banzhang ni hao
xihuan hadoop banzhang banzhang ni hao
xihuan hadoop banzhang/<code>

(2)期望输出数据

<code>Number of splits:4/<code>

2.需求分析

MapReduce知识整理

3.代码实现

(1)编写Mapper类

<code>import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class NLineMapper extends Mapper{
	
	private Text k = new Text();
	private LongWritable v = new LongWritable(1);
	
	@Override
	protected void map(LongWritable key, Text value, Context context)	throws IOException, InterruptedException {
		
		 // 1 获取一行
        String line = value.toString();
        
        // 2 切割
        String[] splited = line.split(" ");
        
        // 3 循环写出
        for (int i = 0; i < splited.length; i++) {
        	
        	k.set(splited[i]);
        	
           context.write(k, v);
        }
	}
}/<code>

(2)编写Reducer类

<code>import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class NLineReducer extends Reducer{
	
	LongWritable v = new LongWritable();
	
	@Override
	protected void reduce(Text key, Iterable values,	Context context) throws IOException, InterruptedException {
		
        long sum = 0l;

        // 1 汇总
        for (LongWritable value : values) {
            sum += value.get();
        }  
        
        v.set(sum);
        
        // 2 输出
        context.write(key, v);
	}
}/<code>

(3)编写Driver类

<code>import java.io.IOException;
import java.net.URISyntaxException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.NLineInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class NLineDriver {
	
	public static void main(String[] args) throws IOException, URISyntaxException, ClassNotFoundException, InterruptedException {
		
// 输入输出路径需要根据自己电脑上实际的输入输出路径设置
args = new String[] { "e:/input/inputword", "e:/output1" };

		 // 1 获取job对象
		 Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);
        
        // 7设置每个切片InputSplit中划分三条记录
        NLineInputFormat.setNumLinesPerSplit(job, 3);
          
        // 8使用NLineInputFormat处理记录数  
        job.setInputFormatClass(NLineInputFormat.class);  
          
        // 2设置jar包位置,关联mapper和reducer
        job.setJarByClass(NLineDriver.class);  
        job.setMapperClass(NLineMapper.class);  
        job.setReducerClass(NLineReducer.class);  
        
        // 3设置map输出kv类型
        job.setMapOutputKeyClass(Text.class);  
        job.setMapOutputValueClass(LongWritable.class);  
        
        // 4设置最终输出kv类型
        job.setOutputKeyClass(Text.class);  
        job.setOutputValueClass(LongWritable.class);  
          
        // 5设置输入输出数据路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));  
        FileOutputFormat.setOutputPath(job, new Path(args[1]));  
          
        // 6提交job
        job.waitForCompletion(true);  
	}
}/<code>

4.测试

(1)输入数据

<code>banzhang ni hao
xihuan hadoop banzhang
banzhang ni hao
xihuan hadoop banzhang
banzhang ni hao
xihuan hadoop banzhang
banzhang ni hao
xihuan hadoop banzhang
banzhang ni hao
xihuan hadoop banzhang banzhang ni hao
xihuan hadoop banzhang/<code>

(2)输出结果的切片数

MapReduce知识整理

自定义InputFormat

在企业开发中,Hadoop框架自带的InputFormat类型不能满足所有应用场景,需要自定义InputFormat来解决实际问题。

自定义InputFormat步骤如下:

(1)自定义一个类继承FileInputFormat

(2)改写RecordReader,实现一个读取一个完整文件封装为KV

(3)在输出时使用SequenceFileOutPutFormat输出合并文件。

自定义InputFormat案例实操

无论HDFS还是MapReduce,在处理小文件时效率都非常低,但又难免面临处理大量小文件的场景,此时,就需要有相应解决方案。可以自定义InputFormat实现小文件的合并。

1.需求

将多个小文件合并成一个SequenceFile文件(SequenceFile文件是Hadoop用来存储二进制形式的key-value对的文件格式),SequenceFile里面存储着多个文件,存储的形式为文件路径+名称为key,文件内容为value。

(1)输入数据

MapReduce知识整理

(2)期望输出文件格式

MapReduce知识整理

2.需求分析

1.自定义一个类继承FileInputFormat

(1)重写isSplitable()方法,返回false不可切割

(2)重写createRecordReader(),创建自定义的RecordReader对象,并初始化

2.改写RecordReader,实现一次读取一个完整文件封装为KV

(1)采用IO流一次读取一个文件输出到value中,因为设置了不可切片,最终把所有文件封装了value中。

(2)获取文件路径信息+名称,并设置key

3.设置Driver

MapReduce知识整理

3.程序实现

(1)自定义InputFromat

<code>import java.io.IOException;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

// 定义类继承FileInputFormat
public class WholeFileInputformat extends FileInputFormat{
	
	@Override
	protected boolean isSplitable(JobContext context, Path filename) {
		return false;
	}

	@Override
	public RecordReader createRecordReader(InputSplit split, TaskAttemptContext context)	throws IOException, InterruptedException {
		
		WholeRecordReader recordReader = new WholeRecordReader();
		recordReader.initialize(split, context);
		
		return recordReader;
	}
}/<code>

(2)自定义RecordReader类

<code>import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

public class WholeRecordReader extends RecordReader{

	private Configuration configuration;
	private FileSplit split;
	
	private boolean isProgress= true;
	private BytesWritable value = new BytesWritable();
	private Text k = new Text();

	@Override
	public void initialize(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException {
		
		this.split = (FileSplit)split;
		configuration = context.getConfiguration();
	}

	@Override
	public boolean nextKeyValue() throws IOException, InterruptedException {
		
		if (isProgress) {

			// 1 定义缓存区
			byte[] contents = new byte[(int)split.getLength()];
			
			FileSystem fs = null;
			FSDataInputStream fis = null;
			
			try {
				// 2 获取文件系统
				Path path = split.getPath();
				fs = path.getFileSystem(configuration);
				
				// 3 读取数据
				fis = fs.open(path);
				
				// 4 读取文件内容
				IOUtils.readFully(fis, contents, 0, contents.length);
				
				// 5 输出文件内容
				value.set(contents, 0, contents.length);

       // 6 获取文件路径及名称
       String name = split.getPath().toString();

       // 7 设置输出的key值
       k.set(name);

			} catch (Exception e) {
				
			}finally {
				IOUtils.closeStream(fis);
			}
			
			isProgress = false;
			
			return true;
		}
		
		return false;
	}

	@Override
	public Text getCurrentKey() throws IOException, InterruptedException {
		return k;
	}

	@Override
	public BytesWritable getCurrentValue() throws IOException, InterruptedException {
		return value;
	}

	@Override
	public float getProgress() throws IOException, InterruptedException {
		return 0;
	}

	@Override
	public void close() throws IOException {
	}
}/<code>

(3)编写SequenceFileMapper类处理流程

<code>import java.io.IOException;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

public class SequenceFileMapper extends Mapper{
	
	@Override
	protected void map(Text key, BytesWritable value,			Context context)		throws IOException, InterruptedException {

		context.write(key, value);
	}
}/<code>

(4)编写SequenceFileReducer类处理流程

<code>import java.io.IOException;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class SequenceFileReducer extends Reducer {

	@Override
	protected void reduce(Text key, Iterable values, Context context)		throws IOException, InterruptedException {

		context.write(key, values.iterator().next());
	}
}/<code>

(5)编写SequenceFileDriver类处理流程

<code>package com.atguigu.mapreduce.inputformat;
import java.io.IOException;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class SequenceFileReducer extends Reducer {

	@Override
	protected void reduce(Text key, Iterable values, Context context)		throws IOException, InterruptedException {

		context.write(key, values.iterator().next());
	}
}
(5)编写SequenceFileDriver类处理流程
package com.atguigu.mapreduce.inputformat;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;

public class SequenceFileDriver {

	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
		
       // 输入输出路径需要根据自己电脑上实际的输入输出路径设置
		args = new String[] { "e:/input/inputinputformat", "e:/output1" };

       // 1 获取job对象
		Configuration conf = new Configuration();
		Job job = Job.getInstance(conf);

       // 2 设置jar包存储位置、关联自定义的mapper和reducer
		job.setJarByClass(SequenceFileDriver.class);
		job.setMapperClass(SequenceFileMapper.class);
		job.setReducerClass(SequenceFileReducer.class);

       // 7设置输入的inputFormat
		job.setInputFormatClass(WholeFileInputformat.class);

       // 8设置输出的outputFormat
	 job.setOutputFormatClass(SequenceFileOutputFormat.class);
       
// 3 设置map输出端的kv类型
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(BytesWritable.class);
		
       // 4 设置最终输出端的kv类型
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(BytesWritable.class);

       // 5 设置输入输出路径
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));

       // 6 提交job
		boolean result = job.waitForCompletion(true);
		System.exit(result ? 0 : 1);
	}
}
3.2 MapReduce工作流程/<code>

MapReduce工作流程

1.流程示意图

MapReduce知识整理

MapReduce知识整理

2.流程详解

上面的流程是整个MapReduce最全工作流程,但是Shuffle过程只是从第7步开始到第16步结束,具体Shuffle过程详解,如下:

1)MapTask收集我们的map()方法输出的kv对,放到内存缓冲区中

2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件

3)多个溢出文件会被合并成大的溢出文件

4)在溢出过程及合并的过程中,都要调用Partitioner进行分区和针对key进行排序

5)ReduceTask根据自己的分区号,去各个MapTask机器上取相应的结果分区数据

6)ReduceTask会取到同一个分区的来自不同MapTask的结果文件,ReduceTask会将这些文件再进行合并(归并排序)

7)合并成大文件后,Shuffle的过程也就结束了,后面进入ReduceTask的逻辑运算过程(从文件中取出一个一个的键值对Group,调用用户自定义的reduce()方法)

3.注意

Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。

缓冲区的大小可以通过参数调整,参数:io.sort.mb默认100M。

4.源码解析流程

<code>context.write(k, NullWritable.get());
output.write(key, value);
collector.collect(key, value,partitioner.getPartition(key, value, partitions));
	HashPartitioner();
collect()
	close()
	collect.flush()
sortAndSpill()
	sort()   QuickSort
mergeParts();
	//file.out
 //file.out.index
collector.close();/<code>

Shuffle机制

Map方法之后,Reduce方法之前的数据处理过程称之为Shuffle。

MapReduce知识整理

MapTask工作机制

MapReduce知识整理

1)Read阶段:MapTask通过用户编写的RecordReader,从输入InputSplit中解析出一个个key/value。

(2)Map阶段:该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。

(3)Collect收集阶段:在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个环形内存缓冲区中。

(4)Spill阶段:即“溢写”,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。

溢写阶段详情:

步骤1:利用快速排序算法对缓存区内的数据进行排序,排序方式是,先按照分区编号Partition进行排序,然后按照key进行排序。这样,经过排序后,数据以分区为单位聚集在一起,且同一分区内所有数据按照key有序。

步骤2:按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文件output/spillN.out(N表示当前溢写次数)中。如果用户设置了Combiner,则写入文件之前,对每个分区中的数据进行一次聚集操作。

步骤3:将分区数据的元信息写到内存索引数据结构SpillRecord中,其中每个分区的元信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当前内存索引大小超过1MB,则将内存索引写到文件output/spillN.out.index中。

(5)Combine阶段:当所有数据处理完成后,MapTask对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。

当所有数据处理完后,MapTask会将所有临时文件合并成一个大文件,并保存到文件output/file.out中,同时生成相应的索引文件output/file.out.index。

在进行文件合并过程中,MapTask以分区为单位进行合并。对于某个分区,它将采用多轮递归合并的方式。每轮合并io.sort.factor(默认10)个文件,并将产生的文件重新加入待合并列表中,对文件排序后,重复以上过程,直到最终得到一个大文件。

让每个MapTask最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量小文件产生的随机读取带来的开销。

ReduceTask工作机制

1.ReduceTask工作机制

MapReduce知识整理

(1)Copy阶段:ReduceTask从各个MapTask上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。

(2)Merge阶段:在远程拷贝数据的同时,ReduceTask启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。

(3)Sort阶段:按照MapReduce语义,用户编写reduce()函数输入数据是按key进行聚集的一组数据。为了将key相同的数据聚在一起,Hadoop采用了基于排序的策略。由于各个MapTask已经实现对自己的处理结果进行了局部排序,因此,ReduceTask只需对所有数据进行一次归并排序即可。

(4)Reduce阶段:reduce()函数将计算结果写到HDFS上。

2.设置ReduceTask并行度(个数)

ReduceTask的并行度同样影响整个Job的执行并发度和执行效率,但与MapTask的并发数由切片数决定不同,ReduceTask数量的决定是可以直接手动设置:

MapReduce知识整理

3.实验:测试ReduceTask多少合适

1)实验环境:1个Master节点,16个Slave节点:CPU:8GHZ,内存: 2G

(2)实验结论:

MapReduce知识整理

4.注意事项

(1)如果ReduceTask=0,表示没有Reduce阶段,输出文件个数和Map个数一致。

(2)ReduceTask默认值就是1,所以输出文件个数为一个。

(3)如果数据分布不均匀,就有可能在Reduce阶段产生数据倾斜。

(4)ReduceTask数量并不是任意设置,还要考虑业务逻辑需求,有些情况下,需要计算全局汇总结果,就只能有1个ReduceTask。

(5)具体多少个ReduceTask,需要根据集群性能而定。

(6)如果分区数不是1,但是ReduceTask为1,是否执行分区过程。答案是:不执行分区过程。因为在MapTask的源码中,执行分区的前提是先判断ReduceNum个数是否大于1。大于1肯定不执行。


分享到:


相關文章: