臨牀新證據︱新型降糖藥物對心血管的保護作用

临床新证据︱新型降糖药物对心血管的保护作用

新型降糖藥物對心血管保護作用的

臨床新證據

New clinical evidence of cardiovascular protection with new glucose-lowering agents

鄭 剛

作者單位:300250 天津市第三中心醫院分院心內科

通訊作者:鄭剛,電子信箱:[email protected]

2型糖尿病(type 2 diabetes mellitus,T2DM)是導致心血管疾病(cardiovascular disease,CVD)死亡的一個重要原因,傳統的降糖藥僅降低血糖和T2DM微血管合併症,對大血管合併症影響較少[1]。以往大規模多中心隨機雙盲臨床試驗的證據顯示,強化血糖控制僅使主要不良心血管事件(major adverse cardiac event,MACE)的危險降低9%、腎臟事件降低20%和眼合併症降低13%[2]。因此,缺少嚴格控制血糖對心血管保護作用的證據,曾經使用過的降糖藥並不能降低T2DM患者心血管死亡危險。而大多數T2DM患者死於心血管疾病。如何開發一種既可降糖又對心血管沒有不利或有保護作用的降糖藥是近年來研究的熱點。此外,2008年美國食品藥品管理局規定,新開發的降糖藥應行心血管安全評估

[3]。因此,新型降糖藥物對心血管影響成為臨床關注的重點。

1

吡格列酮

吡格列酮屬噻唑烷二酮類,是過氧化物酶體增殖物激活受體γ(peroxisome proliferator-activated receptor-γ,PPAR-γ)的激動劑。吡格列酮通過刺激PPAR-γ增強機體對胰島素的敏感性。臨床研究顯示,吡格列酮在增加機體對胰島素敏感性,降低血糖的同時,對心血管、心律失常和腦卒中有保護作用。

目前臨床證據顯示,對基線無CVD的T2DM患者,吡格列酮能預防心血管事件(cardiovascular event,CVE)和降低病死率,特別是糖尿病腎病患者[4];此外,缺血性腦卒中或暫時性腦缺血等高風險患者亦可獲益[5]。薈萃分析發現,吡格列酮能降低臨床表現為心血管疾病患者的複發性MACE、卒中或心肌梗死的風險,對心血管有保護作用[6]。回顧性隊列研究彙總分析顯示,吡格列酮顯著降低心血管和非心血管死亡危險[7]

。吡格列酮可使糖尿病患者發生心房顫動(AF)的風險降低30%,而且不論是新發還是復發AF,均顯著獲益[8]。吡格列酮預防糖尿病患者發生AF,可能是通過降低糖尿病誘導的心房結構和電生理重構來實現的[9]

此外,近期發生過缺血性卒中或暫時性腦缺血的患者,接受吡格列酮治療可降低再發卒中或心肌梗死的風險[10];且卒中或心肌梗死風險越高獲益越大[11]。吡格列酮可預防胰島素抵抗的非糖尿病的缺血性卒中風險,降低近期腦血管事件後急性冠狀動脈綜合徵的發生率,吡格列酮在預防特發性1型心肌梗死上具有最明顯的效果[12]

吡格列酮對心血管保護作用的可能機制:一方面可抑制糖尿病導致的血管內皮細胞炎症反應[13]。還可通過激活血管PPAR-γ,發揮抗炎和心血管保護作用[14]。此外,吡格列酮可通過抑制晚期糖基化終末產物受體(RAGE)信號傳遞系統而發揮抗動脈粥樣硬化作用

[15]。還有研究顯示,吡格列酮與糖尿病患者血液中的瘦素水平有關[16]

2

二肽基肽酶4(dipeptidyl peptidase 4,DPP-4)抑制劑

胰高血糖素樣肽1(glucagon-like peptide-1,GLP-1)是由空腸末端、迴腸、結腸的細胞在攝食和神經內分泌刺激下分泌的一種激素,具有促進胰島素釋放的作用,當葡萄糖濃度升高時,分泌增強。食物中的糖類和脂類對GLP-1的刺激作用最強。體內GLP-1半衰期非常短,幾分鐘後即被DPP-4水解,降解為沒有活性的物質。DPP-4抑制劑(DPP-4i)可以抑制DPP-4水解酶的活性,使GLP-1作用時間延長,通過胃腸道調節糖代謝而發揮降低血糖的作用[17]

目前研究發現,DPP-4i對T2DM患者的心血管作用為中性,既不增加也不降低心血管風險[18];而對腎臟有一定的保護作用[19]。DPP-4i對心力衰竭的作用有一定差異,沙格列汀可使T2DM患者因心力衰竭住院的風險顯著升高,而維格列汀和西格列汀不增加T2DM患者因心力衰竭住院的風險[20,21]。薈萃分析發現,在短期內DPP-4i不增加T2DM患者MACE危險,並可降低T2DM患者卒中的風險

[22]。但也有研究結果顯示,DPP-4i的使用與因心力衰竭住院風險增加相關,維達列汀和西他列汀相對更安全[23]。DPP-4i對心血管的作用在基線有或無CVD的T2DM患者均一致[24]。大規模隊列研究證據顯示,與磺脲類相比,DPP-4i可改善患者的心血管預後[25];DPP-4i對因心力衰竭住院無顯著影響;對基線有心力衰竭患者的亞組分析顯示,DPP-4i的使用與心力衰竭無關[26]

DPP-4i對心血管作用的可能機制:間質細胞趨化因子1可促使冠狀動脈粥樣斑塊生長和不穩定,刺激有害的神經內分泌機制、促使心肌炎症和心肌纖維化。而DPP-4i可抑制幹細胞化學激酶(stem cell chemokine),從而抑制間質細胞趨化因子1,這可能是DPP-4i延緩動脈粥樣硬化進展,穩定斑塊,減少缺血性事件發生的一個可能機制[27]。也有研究顯示,維達列汀可逆轉慢性心肌梗死鼠模型的氧化應激和心肌纖維化,改善心臟功能。

3

GLP-1受體激動劑

GLP-1受體激動劑(GLP-1 RA)通過模擬天然GLP-1激活GLP-1受體而發揮作用,且不易被DPP-4快速降解,延長了半衰期,增加了活性GLP-1在體內的濃度[28]

研究結果證實,利西拉肽和艾塞那肽對具有心血管高危因素的T2DM患者的心血管預後無顯著影響,利拉魯肽和索馬魯肽則有顯著的心血管保護作用[29]。對於不同的結果仍需新的隨機試驗來證實。度拉魯肽對糖尿病心血管預後影響研究(REWIND試驗)納入了24個國家的370個醫療中心的9 901例平均糖尿病病程>10年且既往有CVD的T2DM患者,REWIND試驗為國際性、女性比例高、既往有CVD、入選時糖化血紅蛋白高的大規模臨床試驗,該研究結果最終將揭示全球範圍內中年糖尿病患者使用GLP-1 RA對心血管是否有保護作用[30]

薈萃分析發現,GLP-1 RA治療可降低全因、心血管和心肌梗死死亡危險[31];但是,GLP-1RA治療對致命性和非致命性心肌梗死、致命性和非致命性卒中、因心力衰竭和不穩定型心絞痛住院無顯著影響[32]。而利拉魯肽可顯著降低CVE、心血管死亡和全因死亡,索馬魯肽可顯著降低CVE和非致命性卒中

[33]。在使用他汀治療的日本T2DM患者中,GLP-1 RA能降低血清LDL-C[34]。利拉魯肽可以改善慢性心力衰竭患者的心功能[35]

GLP-1 RA對T2DM患者心臟保護作用的機制包括:GLP-1 RA抑制心肌缺血導致的氧化激活、炎症反應、細胞凋亡和心肌纖維化;GLP-1 RA可抑制斑塊進展、改變斑塊組成成分並穩定斑塊[36]。臨床觀察也發現,GLP-1RA通過抑制氧化應激作用,改善心房僵硬度和左心室張力[37]

4

鈉-葡萄糖協同轉運蛋白2抑制劑(sodium-glucose co-transporter 2 inhibitors,SGLT2-I)

1835年,法國化學家在蘋果樹樹皮中發現了一種稱之為SGLT2-I的物質,SGLT2-I可以不依賴胰島素的降糖途徑,即通過減少葡萄糖在腎臟的重吸收,從尿中直接排糖。SGLT2-I除具有明確的降糖效果外,還能帶來減輕體重、降低血壓、降低尿酸的額外獲益。

研究顯示,SGLT2-I的使用可顯著降低心力衰竭發生率39%、死亡危險51%、心力衰竭或死亡率複合終點46%

[38]。恩格列淨不僅可降低複合終點風險,還能降低心力衰竭住院、心血管死亡及全因死亡風險[39]。與安慰劑組相比,坎格列淨治療組心血管複合終點發生率降低14%、因心力衰竭住院風險減少33%、腎臟複合結局風險降低40%,並且嚴重不良事件相對較少[40]。恩格列淨可降低尿白蛋白排洩率,改善糖尿病患者的腎功能[41]。薈萃分析表明,在T2DM患者中,達格列淨會增加不良腎臟事件風險,而恩格列淨具有保護作用[42]

SGLT2-I選擇性地抑制腎臟近曲小管上皮細胞膜管腔側的SGLT2,減少葡萄糖重吸收並促進尿糖排洩,進而降低血糖,同時這類藥物還有減輕體重、降低血脂、降壓等作用。目前研究發現,SGLT2-I對心血管保護作用機制如下。

4.1改善心肌代謝

SGLT2-I使紅細胞比積增加;在輕度、持續的高酮血癥狀態下β-羥丁酸優先於遊離脂肪酸被心臟選擇作為能量供應來源,改善能量代謝[43]

4.2減輕體重

SGLT2-I可降低T2DM和非糖尿病個體的最大腎葡萄糖轉運和葡萄糖溢出到尿液中的閾值。恩格列淨對T2DM和非T2DM患者都能增加腎臟排糖,並降低葡萄糖溢出閾值,這也可能是目前SGLT2類藥物可減輕體重的機制[44]

4.3底物轉化學說

SGLT2-I引起能量代謝方式的轉變,使機體脂肪氧化增加。達格列淨可引起脂肪氧化增加14%,葡萄糖氧化減少20%。脂肪氧化終產物乙酰輔酶A會轉變為酮體,心肌優先利用酮體,繼而改善心肌工作效率。研究表明,β-羥丁酸在降低氧消耗的同時,使心臟工作效率提高了24%。此外,輕度β-羥丁酸升高也可減少氧化應激,刺激線粒體生物合成,穩定細胞膜電位,抑制心律失常[45]。因此,酮體的有效利用或許有助於SGLT2-I引起的心血管獲益,但仍需更多研究證實。

4.4電解質因素

T2DM合併心力衰竭患者的心肌細胞胞質中鈉和鈣離子含量升高,線粒體中鈣離子含量降低。胞質中升高的鈉離子不僅加重心力衰竭的進程,而且增加心律失常猝死的風險。負責心肌細胞鈉轉運的蛋白之一為Na+/H+逆向轉運蛋白。研究表明,心力衰竭患者Na+/H+逆向轉運蛋白活性升高,從而導致胞質鈉離子升高及鈣離子超載,而線粒體鈣離子下降,引起心肌功能障礙。SGLT2-I能夠直接抑制Na+/H+轉運蛋白活性,從而降低心肌細胞胞質鈉和鈣離子含量,增加線粒體內鈣離子含量,逆轉心力衰竭患者的電解質失常

[46]

4.5血流動力學因素

SGLT2-I的降壓作用明確,可顯著降低患者的血壓。因此,對於SGLT2-I的心血管獲益,血壓下降應是其部分原因。此外,SGLT2-I的滲透性利尿和尿鈉排洩作用可直接影響心血管系統。EMPA-REG研究結束時,恩格列淨組血細胞比容增加4.8%,提示血管容量降低。達格列淨可引起糖尿病患者紅細胞生成素增加,並在治療2~4周後達到最大值,促進紅細胞生成,一定程度上增加了血細胞比容[47]。另外,胞外液/胞內液比率是全因死亡和CVD的高風險指標,高比率通常導致全因死亡率和CVD發生率升高。因此,血細胞比容增加可能是SGLT2-I心血管獲益的部分原因。

4.6減弱心肌纖維化

心肌纖維化在心力衰竭的發生和發展中發揮著重要作用。動物實驗利用肥胖T2DM小鼠模型,恩格列淨治療10周後,心肌間質纖維化、冠狀動脈纖維化、冠狀動脈內膜增厚和心肌間質巨噬細胞浸潤明顯減輕,血管擴張功能改善,這表明恩格列淨可明顯改善心血管損傷。另外,利用心肌梗死後心室重構動物模型,達格列淨可以通過活性氧簇/信號轉導與轉錄活化因子3信號通路促進巨噬細胞由M2型向M1型轉化,減少心肌纖維細胞的浸潤,減緩心肌纖維化進程。因此,心肌纖維化的減少可能也是SGLT2-I心血管獲益的主要原因之一

[48]

4.7降低血尿酸水平

血尿酸水平升高會導致高血壓、血管損傷和腎損傷,與CVD風險增加有關,而SGLT2-I可以促進尿酸排洩,降低血尿酸水平。SGLT2-I通過增加尿糖濃度減少尿酸的重吸收,並間接影響葡萄糖轉運蛋白9亞型2的尿酸轉運功能,增加尿酸排洩。血尿酸水平降低能夠下調血壓和阻止血管損傷,這可能有助於降低遠期心血管死亡率。

4.8緩解動脈硬化

動脈硬化是導致CVD的重要風險因素,而脈壓和動態動脈硬化指數是動脈硬化的兩個重要指標。研究顯示,SGLT2-I可通過緩解動脈硬化,起到心血管保護作用。

5

小結

糖尿病是CVD的重要危險因素,合併T2DM的CVD患者比單純CVD患者的MACE風險高約1.7倍。因此,減少T2DM相關危險因素極其重要。已有足夠的研究表明,SGLT2-I依帕列淨和坎格列淨,以及GLP-1 RA利拉魯肽和索馬魯肽,可以減少CVE。SGLT2-I依帕列淨和GLP-1 RA利拉魯肽可作為優選治療方案。2016年歐洲CVD預防指南建議,對於T2DM合併CVD患者,應儘早應用SGLT2-I,以降低心血管死亡和總死亡率(Ⅱa類推薦)。當這些治療方案不能達到治療目標或存在禁忌時,可選用噻唑烷二酮類抗糖尿病藥物吡格列酮、GLP-1 RA艾塞那肽和DPP-4i。目前研究顯示,這些藥物對於預防CVE具有中性作用或有潛在獲益,DPP-4i沙格列汀和西格列汀對穩定型CVD或有CVD風險患者的主要心血管終點具有中性作用。未來的臨床試驗,應繼續研究抗糖尿病藥物對各種類型CVD心血管事件硬性終點的可能獲益。

參考文獻

[1]BistolaV,LambadiariV,DimitriadisG, et al. Possible mechanisms of direct cardiovascular impact of GLP-1 agonists and DPP4 inhibitors [J]. Heart Fail Rev, 2018, 23(3): 377-388.

[2]PaneniF,LüscherTF. Cardiovascular Protection in the Treatment of Type 2 Diabetes: A Review of Clinical Trial Results Across Drug Classes [J]. Am J Med, 2017, 130(6S): S18-S29.

[3]SecrestMH,UdellJA,FilionKB. The cardiovascular safety trials of DPP-4 inhibitors, GLP-1 agonists, and SGLT2 inhibitors [J]. Trends Cardiovasc Med, 2017, 27(3): 194-202.

[4]KernanWN,ViscoliCM,DearbornJL, et al; Insulin Resistance Intervention After Stroke (IRIS) Trial Investigators. Targeting Pioglitazone Hydrochloride Therapy After Stroke or Transient Ischemic Attack According to Pretreatment Risk for Stroke or Myocardial Infarction [J]. JAMA Neurol, 2017, 74(11): 1319-1327.

[5]de JongM,van der WorpHB,van der GraafY, et al. Pioglitazone and the secondary prevention of cardiovascular disease. A meta-analysis of randomized-controlled trials [J]. Cardiovasc Diabetol, 2017, 16(1): 134.

[6]DavidsonMB,PanD. An updated meta-analysis of pioglitazone exposure and bladder cancer and comparison to the drug's effect on cardiovascular disease and non-alcoholic steatohepatitis [J]. Diabetes Res Clin Pract, 2017, 135: 102-110.

[7]BaiY,WangYL,ShantsilaA, et al. The Global Burden of Atrial Fibrillation and Stroke: A Systematic Review of the Clinical Epidemiology of Atrial Fibrillation in Asia [J]. Chest, 2017, 152(4): 810-820.

[8]ZhangZ,ZhangX,KorantzopoulosP, et al. Thiazolidinedione use and atrial fibrillation in diabetic patients: a meta-analysis [J]. BMC Cardiovasc Disord, 2017, 17(1): 96.

[9]LiuC,LiuR,FuH, et al. Pioglitazone attenuates atrial remodeling and vulnerability to atrial fibrillation in alloxan-induced diabetic rabbits [J]. Cardiovasc Ther, 2017, 35(5).

[10]KernanWN,ViscoliCM,DearbornJL, et al. Targeting Pioglitazone Hydrochloride Therapy After Stroke or Transient Ischemic Attack According to Pretreatment Risk for Stroke or Myocardial Infarction [J]. JAMA Neurol, 2017, 74(11): 1319-1327.

[11]YaghiS,FurieKL,ViscoliCM, et al; IRIS Trial Investigators. Pioglitazone Prevents Stroke in Patients with a Recent TIA or Ischemic Stroke: A Planned Secondary Analysis of the IRIS Trial [J]. Circulation, 2018, 137(5): 455-463.

[12]YoungLH,ViscoliCM,CurtisJP, et al. Cardiac Outcomes After Ischemic Stroke or Transient Ischemic Attack: Effects of Pioglitazone in Patients With Insulin Resistance Without Diabetes Mellitus[J]. Circulation, 2017, 135(20): 1882-1893.

[13]SunH,ZhuX,LinW, et al. Interactions of TLR4 and PPARγ, Dependent on AMPK Signalling Pathway Contribute to Anti-Inflammatory Effects of Vaccariae Hypaphorine in Endothelial Cells [J]. Cell Physiol Biochem, 2017, 42(3): 1227-1239.

[14]ZhangY,ZhangC,LiH, et al. Down-regulation of vascular PPAR-γ contributes to endothelial dysfunction in high-fat diet-induced obese mice exposed to chronic intermittent hypoxia [J]. Biochem Biophys Res Commun, 2017, 492(2): 243-248.

[15]GaoH,LiH,LiW, et al. Pioglitazone Attenuates Atherosclerosis in Diabetic Mice by Inhibition of Receptor for Advanced Glycation End-Product (RAGE) Signaling [J]. Med Sci Monit, 2017, 23: 6121-6131.

[16]IdaS,MurataK,KanekoR. Effects of pioglitazone treatment on blood leptin levels in patients with type 2 diabetes [J]. J Diabetes Investig, 2018, 9(4): 917-924.

[17]CutshallBT,TwillaJD,OlingerAS, et al. A review on cardiovascular effects of newer hypoglycaemic medications [J]. Ann Med, 2017, 49(7): 603-612.

[18]NauckMA,MeierJJ,CavenderMA, et al. Cardiovascular Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors[J]. Circulation, 2017, 136(9): 849-870.

[19]DeaconCF. A review of dipeptidyl peptidase-4 inhibitors. Hot topics from randomized controlled trials [J]. Diabetes Obes Metab, 2018, 20(Suppl 1): 34-46.

[20]YeZ,LiH,LuH, et al. Long-term effects of sitagliptin in patients with type 2 diabetes mellitus and hypertension: results from the PROLOGUE study [J]. Oncotarget, 2017, 8(67): 111979-111997.

[21]McMurrayJJV,PonikowskiP,BolliGB, et al. Effects of Vildagliptin on Ventricular Function in Patients With Type 2 Diabetes? Mellitus and Heart Failure: A Randomized Placebo-Controlled Trial [J]. JACC Heart Fail, 2018, 6(1): 8-17.

[22]XuS,ZhangX,TangL, et al. Cardiovascular effects of dipeptidyl peptidase-4 inhibitor in diabetic patients with and without established cardiovascular disease: a meta-analysis and systematic review [J]. Postgrad Med, 2017, 129(2): 205-215.

[23]GuoWQ,LiL,SuQ, et al. Effect of Dipeptidyl Peptidase-4 Inhibitors on Heart Failure: A Network Meta-Analysis [J]. Value Health, 201720(10): 1427-1430.

[24]WangF,HeY,ZhangR, et al. Combination therapy of metformin plus dipeptidyl peptidase-4 inhibitor versus metformin plus sulfonylurea and their association with a decreased risk of cardiovascular disease in type 2 diabetes mellitus patients[J]. Medicine (Baltimore), 2017, 96(36): e7638.

[25]KimYG,YoonD,ParkS, et al. Dipeptidyl Peptidase-4 Inhibitors and Risk of Heart Failure in Patients With Type 2 Diabetes Mellitus: A Population-Based Cohort Study [J]. Circ Heart Fail, 2017, 10(9). pii: e003957.

[26]CobrettiMR,BowmanB,GrabarczykT, et al. Dipeptidyl Peptidase-4 Inhibitors and Heart Failure Exacerbation in the Veteran Population: An Observational Study [J]. Pharmacotherapy, 2018, 38(3): 334-340.

[27]PackerM. Have dipeptidyl peptidase-4 inhibitors ameliorated the vascular complications of type 2 diabetes in large-scale trials? The potential confounding effect of stem-cell chemokines [J]. Cardiovasc Diabetol, 2018, 17(1): 9.

[28]GiuglianoD,MaiorinoMI,BellastellaG, et al. Type 2 diabetes and cardiovascular prevention: the dogmas disputed [J]. Endocrine, 2018, 60(2): 224-228.

[29]MarsoSP,BainSC,ConsoliA, et al; SUSTAIN-6 Investigators. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes [J]. N Engl J Med, 2016, 375(19): 1834-1844.

[30]GersteinHC,ColhounHM,DagenaisGR, et al; REWIND Trial Investigators. Design and baseline characteristics of participants in the Researching cardiovascular Events with a Weekly INcretin in Diabetes (REWIND) trial on the cardiovascular effects of dulaglutide [J]. Diabetes Obes Metab, 2018, 20(1): 42-49.

[31]MonamiM,ZannoniS,PalaL, et al. Effects of glucagon-like peptide-1 receptor agonists on mortality and cardiovascular events: A comprehensive meta-analysis of randomized controlled trials [J]. Int J Cardiol, 2017, 240: 414-421.

[32]BethelMA,PatelRA,MerrillP,et al; EXSCEL Study Group. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis [J]. Lancet Diabetes Endocrinol, 2018, 6(2): 105-113.

[33]LeBrasMH,BarryAR,KoshmanSL. Cardiovascular safety outcomes of new antidiabetic therapies [J]. Am J Health Syst Pharm, 2017, 74(13): 970-976.

[34]HasegawaY,HoriM,NakagamiT, et al. Glucagon-like peptide-1 receptor agonists reduced the low-density lipoprotein cholesterol in Japanese patients with type 2 diabetes mellitus treated with statins [J]. J Clin Lipidol, 2018, 12(1): 62-69.e1.

[35]ArturiF,SuccurroE,MiceliS, et al. Liraglutide improves cardiac function in patients with type 2 diabetes and chronic heart failure [J]. Endocrine, 2017, 57(3): 464-473.

[36]NielsenR,JorsalA,IversenP, et al. Effect of liraglutide on myocardial glucose uptake and blood flow in stable chronic heart failure patients: A double-blind, randomized, placebo-controlled LIVE sub-study [J]. J Nucl Cardiol, 2017Aug 2.

[37]LambadiariV,PavlidisG,KousathanaF, et al. Effects of 6-month treatment with the glucagon like peptide-1 analogue liraglutide on arterial stiffness, left ventricular myocardial deformation and oxidative stress in subjects with newly diagnosed type 2 diabetes [J]. Cardiovasc Diabetol, 2018, 17(1): 8.

[38]KosiborodM,CavenderMA,FuAZ, et al; CVD-REAL Investigators and Study Group. Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors) [J]. Circulation, 2017, 136(3): 249-259.

[39]FitchettD,ButlerJ,van de BorneP, et al; EMPA-REG OUTCOME® trial investigators.Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME® trial [J]. Eur Heart J, 2018, 39(5): 363-370.

[40]NealB,PerkovicV,MahaffeyKW, et al; CANVAS Program Collaborative Group. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes [J]. N Engl J Med, 2017, 377(7): 644-657.

[41]CherneyDZI,ZinmanB,InzucchiSE, et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial [J]. Lancet Diabetes Endocrinol, 2017, 5(8): 610-621.

[42]TangH,LiD,ZhangJ, et al. Sodium-glucose co-transporter-2 inhibitors and risk of adverse renal outcomes among patients with type 2 diabetes: A network and cumulative meta-analysis of randomized controlled trials [J]. Diabetes Obes Metab, 2017, 19(8): 1106-1115.

[43]KaulS. Response to Comment on Kaul. Mitigating Cardiovascular Risk in Type 2 Diabetes With Antidiabetes Drugs: A Review of Principal Cardiovascular Outcome Results of EMPA-REG OUTCOME, LEADER, and SUSTAIN-6 Trials [J]. Diabetes Care, 2017, 40(7): 821-831.

[44]Al-JoboriH,DanieleG,CersosimoE, et al. Empagliflozin and Kinetics of Renal Glucose Transport in Healthy Individuals and Individuals With Type 2 Diabetes[J]. Diabetes, 2017, 66(7): 1999-2006. DOI: 10.2337/db17-0100.

[45]d'EmdenM,AmerenaJ,DeedG, et al. SGLT2 inhibitors with cardiovascular benefits: transforming clinical care in Type2 diabetes mellitus [J]. Diabetes Res Clin Pract, 2018, 136: 23-31.

[46]BerteroE,Prates RomaL,AmeriP, et al. Cardiac effects of SGLT2 inhibitors: the sodium hypothesis[J]. Cardiovasc Res, 2018, 114(1): 12-18.

[47]InzucchiSE,ZinmanB,FitchettD, et al. How Does Empagliflozin Reduce Cardiovascular Mortality? Insights From a Mediation Analysis of the EMPA-REG OUTCOME Trial [J]. Diabetes Care, 2018, 41(2): 356-363.

[48]von LewinskiD,KolesnikE,WallnerM, et al. New Antihyperglycemic Drugs and Heart Failure: Synopsis of Basic and Clinical Data [J]. Biomed Res Int, 2017, 2017: 1253425.

临床新证据︱新型降糖药物对心血管的保护作用
临床新证据︱新型降糖药物对心血管的保护作用

本文來源:鄭剛. 新型降糖藥物對心血管保護作用的臨床新證據[J]. 中國心血管雜誌, 2018, 23(4): 277-281.


分享到:


相關文章: