我国农业生产过程中应用的放射性元素有哪些?

韩圣希


你好,很高兴为你回答这个问题

在农业上的应用包括同位素辐射和同位素示踪两方面的应用。它们都是利用放射性同位素在原子核衰变时放出射线这一特性,但在利用方式和应用方法上两者截然不同。前者是利用放射性同位素放出的射线能量所造成的生物效应,诸如致死效应、绝育效应和诱变效应等;后者则是把放射性同位素引入动植物体内,再利用核探测仪跟踪机体对它的吸收、转移和积累的情况,以研究动植物的基本生理和生化过程、机体对营养物质的吸收代谢规律以及动植物同环境的关系等。

辐射育种 1927年L.J.施塔德勒在玉米育种工作中首先发现了X射线能对植物诱发突变,开创了人工诱变研究及其在作物育种上的应用工作。此后世界上许多国家利用裂变反应堆提供的强大辐射源,大量开展了辐射育种工作。

  中国的辐射育种开始于1958年,至1980年已育成145个作物新品种,作物面积达7000万亩。

  射线能引起植物遗传结构的变异,使原有的品种获得一些新特性,如早熟、矮杆、抗病、优质等,经过选择就可育成新品种。辐射育种时要选择适当的材料,用辐射源以一定剂量进行处理。对大多数作物通常是照射风干种子,由照射种子长成的植株叫M代(突变一代)。因大多数突变属隐性突变,M代并不表现其突变性状,需经突变基因的纯合,故主要在M代(突变二代)表现出突变性状,M代是选择的主要世代。在M代获得的符合育种目标的突变体,需经品种比较和产量比较试验,与常规育种具有同样的程序,但育种年限较短。(见彩图)

  放射性同位素在农业上的应用放射性同位素在农业上的应用放射性同位素在农业上的应用辐射保藏食品 射线对生物具有致死效应,在一定剂量的射线照射下,可杀死微生物、昆虫及高等生物体的细胞。利用射线的这一致死效应,可以保藏食品,主要包括;①鱼肉类,利用射线杀灭其中的微生物,以延长保藏期;②谷物类,利用射线杀死其中的害虫;③马铃薯、洋葱和水果类、射线可抑制它们的发芽或延迟成熟。为使辐射保藏食品商品化,需解决以下几个问题:①建立大规模处理食品的辐射源装置,主要包括强大的辐射源和生产自动流水线;②不致因辐射而使食品品质变劣;③辐照后的食品中不存在对人体有害的成分,符合国家规定的卫生标准。从50年代开展这项研究工作以来,目前国际上已有50多个国家着手这方面的研究,并已有10多个国家正式批准一些经过辐射保藏的食物在市场出售,其中包括马铃薯、洋葱、干鲜果、蔬菜、小麦、鱼、肉以及医院病人食物。

  辐射灭虫 射线可导致昆虫不育。正常雌虫同释放的这些不育的雄虫交配后所产的卵不能正常孵化。利用这种方法可降低害虫的虫口密度,最终达到消灭害虫的目的。美国在50年代初利用这种技术防治危害家畜的螺旋蝇,首先获得了成功。利用不育雄虫防治害虫需注意下列几个问题:①照射剂量要适当,即要使害虫不育,又不影响它们的正常活动(如飞翔、吃食等)和交配能力;②要有正确的释放技术,要选择适当的时间和地点,释放的不育雄虫同正常雄虫和正常雌虫之间要有适当比例;③要有虫源,除少数害虫能直接从野外采集外,大部分害虫必须采用人工大量饲养虫作照射用虫源。

  同位素示踪 同位素示踪在农业生产和研究中得到了广泛的应用。它主要应用于研究农作物的光合作用,体内物质输运,肥料利用,农药残留以及家畜的营养代谢等,从而正确制定作物栽培管理和合理有效地施用肥料和农药的措施,对家畜的饲养和管理等提供科学依据。


农村熊二


放射性元素在农业上的应用主要为同位素示踪法

同位素示踪法是引入少量放射性同位素,并随时观察其行踪的方法。例如在肥料中掺入少量的放射性磷-32(半衰期为14.28天,发射1.7兆电子伏的β粒子),可以找到给植物施磷肥的最好方法。用探测或照相胶片测量辐射随时间的变化及其在植物中的位置,就能得到磷的摄入率和累积率的准确资料。同样,给人体注射无害的放射性钠-24(半衰期15.03小时)溶液,可以进行人体血液循环的示踪实验。为了医学诊断的目的,希望引入足够的放射性物质以便提供所需要的数据,但是放射性物质不能达到有害于人体的程度。

再如,监视掺合了放射性同位素流体的行踪可以确定许多种物质的流速,如人体中的血液,输油管中的石油或排入江河中的污水等。利用示踪技术还可以对生物体内的农药形式进行分析,研究农药施用后发生的变化及其在生态系统中运动的规律。

有关光合作用的基本产物的知识,也是在利用二氧化碳-14(14CO2)作为示踪剂之后才被人们所了解的。二氧化碳-14中的碳-14是碳的一个放射性同位素。此外,有些植物具有非常巧妙的机能--在夜间,不断地吸收二氧化碳,到了白昼,就在叶子中进行光合作用。这一现象也是利用二氧化碳-14进行研究后才发现的。

利用示踪剂二氧化碳-14还可以研究有关植物呼吸的详细情况。例如,由于昼夜之间的差别,植物的呼吸情况有什么不同?呼吸对光合作用有什么影响?不同植物之间,呼吸有什么差异等等。

此外,由光合作用产生的淀粉、蛋白质、脂肪等各种物质,在植物体内是怎么样运动、转移的?又是怎么样积累并贮存到各种不同的“仓库”里去的?这些“仓库”包括果实(像稻米、小麦)、 茎(像土豆)、根块(像甘薯)等。所有这些自然界的巧妙安排和行为,也都是在利用示踪剂--二氧化碳-14进行研究之后才得以解释清楚。目前,除了碳-14以外,还可配合使用其它的放射性同位素,如磷-32、氢-3等作示踪剂,从而使一些研究工作能够做得更加细致周密。

还有一些工作,如除草剂的研究、家畜或鸡饲料中养分的传送方式的研究以及各种昆虫的生态方面的研究等等,都离不开使用示踪剂的方法。正是因为有了示踪剂技术,才为各种精密的研究开辟了新的道路,促进了各方面研究工作的开展。


农道


1789年德国化学家M.H.克拉普罗特发现了铀。1828年瑞典化学家I.J.贝采利乌斯发现了钍。在当时,铀和钍只被看作是一般的重金属元素。直到1896年法国物理学家H.贝可勒尔发现铀的放射性,以及1898年M.居里和P.居里发现钋和镭以后,人们才认识到这一类元素都具有放放射性元素-锝

射性,并陆续发现了其他放射性元素。

  核武器试验的沉降物(在大气层进行核试验的情况下,核弹爆炸的瞬间,由炽热蒸汽和气体形成大球(即蘑菇云)携带着弹壳、碎片、地面物和放射性烟云上升,随着与空气的混合,辐射热逐渐损失,温度渐趋降低,于是气态物凝聚成微粒或附着在其它的尘粒上,最后沉降到地面。

   放射性元素最早应用的领域是医学和钟表工业。镭的辐射具有强大的贯穿本领,发现不久便成为当时治疗恶性肿瘤的重要工具;镭盐在暗处发光,用于涂制夜光表盘。后来放射性元素的应用已深入到人类物质生活的各个领域,例如核电站和核舰艇使用的核燃料,工业、农业和医学中使用的放射性标记化合物,工业探伤、测井(石油)、食品加工和肿瘤治疗所使用的某些放射源等。

  放射性元素分为天然放射性元素和人工放射性元素两类。 放射性元素(确切地说应为放射性核素)最早应用的领域是医学和钟表工业。镭的辐射具有强大的贯穿本领,发现不久便成为当时治疗恶性肿瘤的重要工具;镭盐在暗处发光,用于涂制夜光表盘。现在,放射性元素的应用已深入到人类物质生活的各个领域,例如核电站和核舰艇使用的核燃料,工业、农业和医学中使用的放射性标记化合物,工业探伤、测井(石油)、食品加工和肿瘤治疗所使用的某些放射源等。

  


分享到:


相關文章: