有效針對新冠肺炎的“炎症風暴”——Omega-3多不飽和脂肪酸

作者 中南大學湘雅醫學院 林韶輝

新冠肺炎“炎症風暴”是近期公眾關注的諸多熱點話題之一;所謂“炎症風暴”即全身炎症反應綜合徵(SIRS),人體的炎症因子,不僅可以殺掉病毒,也會給自身造成損害,某些新冠患者後期可能突然啟動了一個“炎症風暴”,結果導致各個器官的功能衰竭。那麼應該如何應對“炎症風暴”呢?中南大學湘雅醫學院林韶輝博士撰文“有效針對新冠肺炎的“炎症風暴”——Omega-3多不飽和脂肪酸”,表達了自己的一些觀點,或許會給大家一些思考和啟發。


一、新冠肺炎專家說

1. 武漢金銀潭醫院:上海中山醫院重症醫學科副主任鐘鳴醫生(2020年1月24到達武漢),2020年2月3日,南方人物週刊對鍾醫生進行獨家專訪,提到救治初期,所面臨的困難之中,有的新冠患者後期可能突然啟動了一個“炎症風暴”,這種炎症風暴導致了各個器官的功能衰竭,一旦進入這個狀態,我們的治療很難把它拉回來。


2. 武漢大學中南醫院:《美國醫學會雜誌》2月7日在線發佈了武漢大學中南醫院重症監護室(ICU)主任彭志勇博士領銜的一項回顧性分析,研究團隊認為,新冠肺炎致死的三大主要機制:


中性粒細胞增多,與細胞因子風暴有關;

D-二聚體升高反映凝血激活,提示持續的炎症反應;

血尿素升高提示急性腎損傷,這是感染、休克和缺氧的綜合結果。


3. 種種跡象表明,這些重症患者中發生了不可逆轉的“炎症風暴”。而一旦患者發生“炎症風暴”,糖皮質激素是對抗炎症風暴的武器之一

,可以給免疫系統“滅火”,減輕機體損傷。不過,糖皮質激素是一把“雙刃劍”。一方面它可以減輕炎症反應,有利於改善缺氧、呼吸窘迫症狀;但長期大劑量使用也可能引發諸多不良反應。不少經過大劑量激素治療的“非典”患者,都留下了如股骨頭壞死等嚴重後遺症。


二、“炎症風暴”與Omega-3多不飽和脂肪酸

1. 炎症反應的發生:免疫應激保護

過度炎症反應是ICU患者常見併發症的主要誘因。促炎反應與抗炎反應的平衡狀態,對機體全身性免疫反應發生與否發揮重大作用[1]。應激狀態下,炎性細胞如巨噬細胞、單核細胞、成纖維細胞和內皮細胞活化,釋放促炎性細胞因子、血栓素A2、白三烯、血小板活化因子及氧自由基等炎症介質[2]。炎性細胞因子和炎性介質一方面殺傷局部細胞和組織,另一方面刺激組織修復癒合。炎症反應是一把“雙刃劍”,需要抗炎介質與促炎介質在不同的環節上相互作用、相互拮抗,形成複雜的炎症調控網絡[3]。

2. 炎症反應的失控:過度炎症反應(抗炎-促炎代謝失衡)會導致全身性炎症反應綜合徵

如果抗炎性介質分泌和釋放不足,炎症反應誘因持續強化,超出身體的代償能力,導致促炎性反應調節失控,促炎-抗炎平衡失衡[4],促炎介質占主導地位[5],從而出現過度炎症反應。大量促炎介質突破了局部的自限制作用,滲入血漿分佈到身體其它部位。重要臟器的上皮細胞和血管內皮細胞,可識別受損組織的炎症信號, 啟動內源性報警信號相關的免疫反應, 進而引發全身性炎症反應,最終導致全身多個器官出現功能性障礙,如急性肺損傷、多器官功能障礙綜合症,甚至功能衰竭[6-8]。

3. Omega-3 PUFA對抗炎症反應的作用機制

3.1 炎症與脂肪酸代謝的關係

脂肪酸的代謝衍生物參與細胞代謝調控,和炎症過程密不可分,圖1顯示的是不同脂肪酸的代謝途徑。

花生四烯酸(AA)是一種Omega 6 PUFA,代謝產生花生酸類(eicosanoids),花生四烯酸類脂質經一系列酶催化,產生促炎症調節作用的前列腺素(PGE2)和白三烯B4等。這些促炎性介質進而可激活中性粒細胞、巨噬細胞,刺激炎症細胞因子TNF-α、IL-1、IL-2、IL-8、干擾素(Interferon, IFN )等釋放增多。

另一類 PUFA同樣經酶催化產生如消散素(resolvins)和保護素(protectins),刺激中性粒細胞和巨噬細胞等分泌產生抗炎性細胞因子IL-4、IL-10、IL-13等,來減弱炎症反應,調節機體炎症水平[9, 10]。


有效針對新冠肺炎的“炎症風暴”——Omega-3多不飽和脂肪酸

圖1. 長鏈不飽和脂肪酸代謝示意圖



4. 多種文獻證明,為了減少患者還可能發生爆發性炎症反應,使用高純度的 Omega-3 PUFA製劑,可以減低炎症風暴的發生風險。具體表現

4.1 Omega-3 PUFA富集於細胞膜,參與炎症反應調控過程,減少炎性細胞產生促炎性細胞因子;

Omega-3 PUFA富集於細胞膜,提高細胞膜EPA和DHA脂肪酸的比例[11, 12],影響胞內信號傳導,抑制炎症相關的轉錄因子NF-kappa B的轉錄活性[13, 14],從而減少促炎性細胞因子TNF-alpha、IL-6 和IL-8等的表達[15]。

4.2 Omega-3 PUFA競爭性抑制花生四烯酸代謝產生的促炎性介質;

花生四烯酸類脂質經一系列酶催化產生促炎症調節作用的前列腺素(PGE2)和白三烯B4等。這些促炎性介質進而可激活中性粒細胞、巨噬細胞,刺激炎症細胞因子TNF-α、IL-1、IL-2、IL-8和干擾素(Interferon, IFN)等釋放增多。Omega-3和Omega-6兩類 PUFA競爭相同的脂肪酸代謝酶(Elovl5和FADS2)系統[16-18],從而干擾促炎性介質的生成。

4.3 Omega-3 PUFA代謝生成具有消炎、止痛等生理活性的衍生物;

EPA和DHA經代謝產生消散素(Resolvins)和保護素(Protections)。實驗研究證實,消散素和保護素在關節炎[19]、結腸炎[20]、哮喘[21, 22]等多種炎性疾病中發揮重要的抗炎作用[23, 24] 。例如,resolvin E1,resolvin D1和protectin D1能抑制浸潤性中性粒細胞的細胞遷移,從而減輕局部炎症[24]。此外,resolvin D1和protectin D1還能抑制TNF-α and IL-1β的產生,從而減弱炎症反應[25, 26]。

因此,Omega-3 PUFA能在各個層面調節炎症反應,緩解全身性炎症反應綜合徵的發生,從而為重症疾患病人帶來臨床獲益。

5. Omega-3 PUFA緩解炎症的具體臨床獲益

5.1 C反應蛋白等炎症指標顯著下降,血紅蛋白和白細胞、血小板等細胞類群總量顯著上升。

德國漢諾威醫院一項面向重症創傷病人的前瞻性、隨機、雙盲、對照試驗[27] 證實,ICU監護期間開始使用含大約4克Omega-3 PUFA的營養液,可以顯著降低患者的CRP水平。另一項針對膿血癥兒童的前瞻性,隨機,雙盲,對照試驗[28]發現,補充Omega-3 PUFA顯著降低患者CRP、ESR、IL-6和白蛋白等炎性指標的含量,還能明顯增加血紅蛋白含量和白細胞、血小板等細胞類群的細胞數量,從而縮短患者的ICU監護時間。


有效針對新冠肺炎的“炎症風暴”——Omega-3多不飽和脂肪酸

表1. ICU患者使用Omega-3 PUFA帶來的生理指標和臨床指標獲益



5.2 敗血症狀明顯下降,治療用抗生素使用時間縮短,全身炎症反應綜合徵減少,器官功能障礙後遺症發生率減少,死亡率下降;

美國田納西大學附屬醫院和西班牙多所醫院的臨床研究表明,對於重症創傷患者和膿毒症患者等ICU患者,每天1~3克Omega-3 PUFA營養液可以有效降低菌血症、敗血症併發症發生(下降14%[29]~35%[30]),明顯降低治療用抗生素使用時間和腹腔內膿腫發生率[30]。而使用更高Omega-3 PUFA含量(4克以上)的營養液後,創傷病人全身炎症反應綜合徵發生人數顯著下降[27];膿毒症、敗血症患者的器官功能障礙發生率減少達到43%[31],死亡率顯著下降13.1%[29]~19.4%[31]。


有效針對新冠肺炎的“炎症風暴”——Omega-3多不飽和脂肪酸

表2. 創傷患者和敗血症患者使用Omega-3 PUFA的臨床獲益



5.3 改善氧合狀態,減少呼吸機使用,縮短ICU監護時間;

如表3所示,不同疾患類型的ICU患者補充Omega-3 PUFA,均能起到儘早脫離機械呼吸,縮短ICU監護時間的臨床效果。


有效針對新冠肺炎的“炎症風暴”——Omega-3多不飽和脂肪酸

表3. 不同疾患類型的ICU患者補充Omega-3 PUFA對呼吸機使用時間和ICU監護時間的影響



6. 推薦急性炎症患者使用Omega-3 PUFA的特點

6.1 補充劑量和時間充分,保證對抗炎症的。

6.2 生物利用度高,保證體內有效富集。

6.3 添加中鏈甘油三酯(MCTs),促進Omega-3 PUFA快速細胞富集,為重症患者的症狀緩解贏得時間。添加MCT的Omega-3脂肪乳的體內富集時間更短(術後第六天即檢測到病患血清磷脂和紅細胞細胞膜中的EPA和DHA顯著升高)[35],激發免疫更強(第六天起外周血細胞釋放的白三烯B5含量已增長約2倍)[36];

三、總結

炎症反應的發展和體內脂肪酸代謝的關係密不可分。Omega-3 PUFA富集於細胞膜,參與炎症反應調控過程,減少炎性細胞產生促炎性細胞因子,競爭性降低炎性介質的生成,調節免疫反應[34, 37],從而緩解過度炎症反應[38],有效縮減患者的ICU監護時間,減少全身性炎症反應患者的感染率和死亡率[29, 39-41]。歐洲腸外腸內營養學會和美國腸內腸外營養學會一致推薦,手術患者、危重患者應及早補充Omega-3 PUFA腸內營養液。

參考文獻

1.Bone, R.C., C.J. Grodzin, and R.A. Balk, Sepsis: a new hypothesis for pathogenesis of the disease process. Chest, 1997. 112(1): p. 235-43.

2.Dobson, G.P., Addressing the Global Burden of Trauma in Major Surgery. Front Surg, 2015. 2: p. 43.

3.Binkowska, A.M., G. Michalak, and R. Slotwinski, Current views on the mechanisms of immune responses to trauma and infection. Cent Eur J Immunol, 2015. 40(2): p. 206-16.

4.Molfino, A., et al., Omega-3 Polyunsaturated Fatty Acids in Critical Illness: Anti-Inflammatory, Proresolving, or Both? Oxid Med Cell Longev, 2017. 2017: p. 5987082.

5.Alazawi, W., et al., Inflammatory and Immune Responses to Surgery and Their Clinical Impact. Ann Surg, 2016. 264(1): p. 73-80.

6.Hatakeyama, N. and N. Matsuda, Alert cell strategy: mechanisms of inflammatory response and organ protection. Curr Pharm Des, 2014. 20(36): p. 5766-78.

7.Matsuda, N., Alert cell strategy in SIRS-induced vasculitis: sepsis and endothelial cells. J Intensive Care, 2016. 4: p. 21.

8.Manson, J., C. Thiemermann, and K. Brohi, Trauma alarmins as activators of damage-induced inflammation. Br J Surg, 2012. 99 Suppl 1: p. 12-20.

9.Uddin, M. and B.D. Levy, Resolvins: natural agonists for resolution of pulmonary inflammation. Prog Lipid Res, 2011. 50(1): p. 75-88.

10.Barnig, C., N. Frossard, and B.D. Levy, Towards targeting resolution pathways of airway inflammation in asthma. Pharmacol Ther, 2018. 186: p. 98-113.

11.Walker, C.G., et al., The Pattern of Fatty Acids Displaced by EPA and DHA Following 12 Months Supplementation Varies between Blood Cell and Plasma Fractions. Nutrients, 2015. 7(8): p. 6281-93.

12.Mayer, K., et al., Omega-3 vs. omega-6 lipid emulsions exert differential influence on neutrophils in septic shock patients: impact on plasma fatty acids and lipid mediator generation. Intensive Care Med, 2003. 29(9): p. 1472-81.

13.Novak, T.E., et al., NF-kappa B inhibition by omega -3 fatty acids modulates LPS-stimulated macrophage TNF-alpha transcription. Am J Physiol Lung Cell Mol Physiol, 2003. 284(1): p. L84-9.

14.Lo, C.J., et al., Fish oil decreases macrophage tumor necrosis factor gene transcription by altering the NF kappa B activity. J Surg Res, 1999. 82(2): p. 216-21.

15.Calder, P.C., Omega-3 fatty acids and inflammatory processes. Nutrients, 2010. 2(3): p. 355-74.

16.de Gomez Dumm, I.N. and R.R. Brenner, Oxidative desaturation of alpha-linoleic, linoleic, and stearic acids by human liver microsomes. Lipids, 1975. 10(6): p. 315-7.

17.Hagve, T.A. and B.O. Christophersen, Effect of dietary fats on arachidonic acid and eicosapentaenoic acid biosynthesis and conversion to C22 fatty acids in isolated rat liver cells. Biochim Biophys Acta, 1984. 796(2): p. 205-17.

18.Hagve, T.A. and B.O. Christophersen, Evidence for peroxisomal retroconversion of adrenic acid (22:4(n-6)) and docosahexaenoic acids (22:6(n-3)) in isolated liver cells. Biochim Biophys Acta, 1986. 875(2): p. 165-73.

19.Lima-Garcia, J.F., et al., The precursor of resolvin D series and aspirin-triggered resolvin D1 display anti-hyperalgesic properties in adjuvant-induced arthritis in rats. Br J Pharmacol, 2011. 164(2): p. 278-93.

20.Arita, M., et al., Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc Natl Acad Sci U S A, 2005. 102(21): p. 7671-6.

21.Aoki, H., et al., Resolvin E1 dampens airway inflammation and hyperresponsiveness in a murine model of asthma. Biochem Biophys Res Commun, 2008. 367(2): p. 509-15.

22.Haworth, O., et al., Resolvin E1 regulates interleukin 23, interferon-gamma and lipoxin A4 to promote the resolution of allergic airway inflammation. Nat Immunol, 2008. 9(8): p. 873-9.

23.Serhan, C.N., et al., Anti-microinflammatory lipid signals generated from dietary N-3 fatty acids via cyclooxygenase-2 and transcellular processing: a novel mechanism for NSAID and N-3 PUFA therapeutic actions. J Physiol Pharmacol, 2000. 51(4 Pt 1): p. 643-54.

24.Serhan, C.N., et al., Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med, 2002. 196(8): p. 1025-37.

25.Serhan, C.N., Pro-resolving lipid mediators are leads for resolution physiology. Nature, 2014. 510(7503): p. 92-101.

26.Serhan, C.N., N. Chiang, and T.E. Van Dyke, Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol, 2008. 8(5): p. 349-61.

27.Bastian, L., et al., [Clinical effects of supplemental enteral nutrition solution in severe polytrauma]. Unfallchirurg, 1998. 101(2): p. 105-14.

28.Al-Biltagi, M.A., et al., Beneficial Effects of Omega-3 Supplement to the Enteral Feeding in Children With Mild to Moderate Sepsis. J Intensive Care Med, 2017. 32(3): p. 212-217.

29.Galban, C., et al., An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients. Crit Care Med, 2000. 28(3): p. 643-8.

30.Kudsk, K.A., et al., A randomized trial of isonitrogenous enteral diets after severe trauma. An immune-enhancing diet reduces septic complications. Ann Surg, 1996. 224(4): p. 531-40; discussion 540-3.

31.Pontes-Arruda, A., A.M. Aragao, and J.D. Albuquerque, Effects of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock. Crit Care Med, 2006. 34(9): p. 2325-33.

32.Atkinson, S., E. Sieffert, and D. Bihari, A prospective, randomized, double-blind, controlled clinical trial of enteral immunonutrition in the critically ill. Guy's Hospital Intensive Care Group. Crit Care Med, 1998. 26(7): p. 1164-72.

33.Farquharson, A.L., et al., Effect of dietary fish oil on atrial fibrillation after cardiac surgery. Am J Cardiol, 2011. 108(6): p. 851-6.

34.Kemen, M., et al., Early postoperative enteral nutrition with arginine-omega-3 fatty acids and ribonucleic acid-supplemented diet versus placebo in cancer patients: an immunologic evaluation of Impact. Crit Care Med, 1995. 23(4): p. 652-9.

35.Senkal, M., et al., Supplementation of omega-3 fatty acids in parenteral nutrition beneficially alters phospholipid fatty acid pattern. JPEN J Parenter Enteral Nutr, 2007. 31(1): p. 12-7.

36.Koller, M., et al., Impact of omega-3 fatty acid enriched TPN on leukotriene synthesis by leukocytes after major surgery. Clin Nutr, 2003. 22(1): p. 59-64.

37.Senkal, M., et al., Modulation of postoperative immune response by enteral nutrition with a diet enriched with arginine, RNA, and omega-3 fatty acids in patients with upper gastrointestinal cancer. Eur J Surg, 1995. 161(2): p. 115-22.

38.Iwase, H., et al., Nutritional Effect of Oral Supplement Enriched in omega-3 Fatty Acids, Arginine, RNA on Immune Response and Leukocyte-platelet Aggregate Formation in Patients Undergoing Cardiac Surgery. Nutr Metab Insights, 2014. 7: p. 39-46.

39.Gianotti, L., et al., Effect of route of delivery and formulation of postoperative nutritional support in patients undergoing major operations for malignant neoplasms. Arch Surg, 1997. 132(11): p. 1222-9; discussion 1229-30.

40.Schilling, J., et al., Clinical outcome and immunology of postoperative arginine, omega-3 fatty acids, and nucleotide-enriched enteral feeding: a randomized prospective comparison with standard enteral and low calorie/low fat i.v. solutions. Nutrition, 1996. 12(6): p. 423-9.

41.Daly, J.M., et al., Enteral nutrition with supplemental arginine, RNA, and omega-3 fatty acids in patients after operation: immunologic, metabolic, and clinical outcome. Surgery, 1992. 112(1): p. 56-67




分享到:


相關文章: