战斗机一直在喷火,不会熔化吗?

沉睡中的天蝎1


战斗机喷火或不喷火,实际上温度最高的部分并不是尾部喷管,而是战斗机发动机内的燃烧室。


如果看喷气发动机的结构图,那么燃烧室就是这张结构图中最明亮的那个部分:

一般情况下,在喷气发动机燃烧室内,初始燃烧段的温度可以高达2200度、到了燃烧室的中部(燃烧段)温度就降低到了1900度左右,在燃烧室的出口(稀释段)温度会降低到1500度。这个原因是由于在燃烧室后段空间在扩大,燃气膨胀,整体的单位体积内的内能降低的缘故。

当然了,即便是在稀释段的1500度的温度对于我们的认知来说也是高温了。

战斗机没有烧化掉,那么就是一个材料学和工程学上的问题了。

先说材料学上的问题:

喷气机涡轮上的主要材料是铼的合金,这张合金可以在大约1650度的温度下保持其无力特性,不会变软变型依然能够保持结构强度。因为目前燃烧室出口的气流的温度也就是1500度左右,所以发动机叶片还是可以承受的。

而且由于燃气在推动涡轮旋转的时候做功,因此燃气内能降低这样一来就会很快的降低到更低的温度就对铼合金的叶片没有太大影响了。


另外从工程需的角度上来说对于燃气的费热也是有收集的。

在发动机燃烧室外围和涡轮室的外围有很多管路,这些管路是送往燃烧室的燃油这些燃本来可以通过一个直线管路送到燃烧室内的,但我们看图似乎是大费周章的走了很多冤枉路。实际上这些管路在发动机周围吸收了大量的热量加热了燃油后再送到燃烧室。在这个过程中,大量的燃油就吸收了发动机的热量保证了发动机外部的冷却效果。因此飞机也不会因为内部装了这么一个大型的热源而融化了。


最后说说加力燃烧。

加力燃烧是将大量燃油注入到发动机燃气涡轮后部,在燃烧室内有大量的氧气并没有完全燃烧,并且如果是涡扇发动机的话,还有大量氧气从风扇直接送到后燃烧。

这样在注入大量燃油的时候发动机就可以在瞬间爆发出极大的动力。

但要注意的一点是,在开加力的过程中,需要消耗大量的燃油。基本上目前的战斗仅仅可以开2-3分钟加力燃烧。2-3分钟内飞机还没有彻底升温燃油就已经消耗殆尽了。所以说依旧不会烧化飞机。


军武数据库


战斗机必须在进入加力飞行状态时,尾喷管才会出现尾焰,也就是通常说的‘’喷火‘’。尾焰其实是一种炽烈的高温气体,当战斗在满载起飞、或者大力爬升、或者进入高速飞行状态时,其涡轮喷气式航空发动机需要高负荷运行,这时飞行员通常会打开加力助推,这样即可增加百分之四十至百分之七十的大幅推力。涡轮喷气航空发动机在满负荷工作时,所产生的尾焰温度可以达到七百摄氏度℃,所以涡轮喷气航空发动机燃烧室和尾喷管的材料,自然是能够耐受高温的钛钨高级合金材料。当然这显然是不够的,对于涡轮喷气航空发动机的抗热问题,解决的办法主要还靠风冷暨空气冷却。这就是通过“冷空气”来进行局部降温,即用压气机送进的‘’冷空气‘’将燃烧室中燃烧的火焰与燃烧室内壁乃至尾喷管内壁分隔开,从而形成一个隔离层。文中的“冷空气”之所以加引号,是因为通过压气机送入发动机(燃烧室)的冷空气已经不可避免地被加热,从而变为被加热的‘’冷空气‘’。





当然,被加热的冷空气温度完全在发动机燃烧室和尾喷管抗高温合金材料的耐受范围之内,所以涡轮喷气发动机燃烧室和尾喷管都处于‘’冷空气‘’的无形保护中,因而不会被炽烈地🔥所融化。


Mrttlzz99


战斗机所使用的都是燃气涡轮发动机,其主要原理就是从通过进气口压气机吸入空气,而后空气进入燃烧室与喷射入内的燃油发生燃烧,最后再膨胀做工经过涡轮机喷射出去。现代航空发动机的燃烧室温度最高可以达到2000℃以上,涡轮温度在1500度左右,尾喷口燃气虽然已经经过了一定冷却,但是温度也普遍超过500℃。在如此高温之下,普通材料早就承受不住,高空发动机之所以不熔化,主要是采用了特殊的高温耐热材料以及多种降温结构设计的综合运用。


涡轮承受高温的最主要部分为涡轮叶片,涡轮叶片分为改变气流方向的静子叶片和直接让气流反喷的转子叶片,其中的静子叶片位于转子叶片前方,是直接承受燃烧室喷射高温气体的部位,其温度最高。目前涡轮叶片多采用烧结成单一奥氏体的耐高温稳定镍基合金、铁基合金、钴基合金。涡轮叶片采用中空结构,让气流产生对流、在叶片上形成空气保护膜,并且叶片表面有有集自润滑和耐高温为一体的复合材料热障涂层,这样一整套措施下来,可以将静子叶片温度下降300到600℃,足以保证金属合金材料的稳定运转。


涡轮盘相对于涡轮叶片而言,承受的温度相对较低,但是往往也在700℃以上,由于处于长久的旋转运动之中,对于耐高温持久性的要求也比较高。制造涡轮盘的材料也多为镍基高温合金,早期多采用变形高温材料和铸造高温工艺制造,八十年代后逐步发展出单晶高温合金和凝固高温合金。现在多采用镍基粉末高温合金,在惰性气体的保护下,进行热态成型和快速凝固工艺,可使镍合金的抗高温和强度性能进一步提高,我国已经开发出800℃以上高温合金粉末,用于新式航空发动机之上。



航空发动机的燃烧室是温度最高的部位,早期通常采用与涡轮片相同的镍基合金材料,但是随着高性能发动机不断采用超高温燃烧的方式来提高发动机推重比,现有金属合金材料已经越来越难以满足要求,新型超高温陶瓷材料日渐成为高性能航空发动机标配。陶瓷基复合材料重量只有镍合金的1/3到1/5,但是最高工作温度可以超过1500℃,持续在1200%以上温度工作也具有良好的抗疲劳性能,是目前四代战斗机发动机最主流的材料,美国已经开发出工作温度在1538℃的陶瓷基复合材料,并且助力F35战斗机的普惠F135发动机成为了世界最强发动机。

发动机尾喷管温度较低,制造起来相对简单,使用镍铁合金完全可以胜任,但是为了最大限度的减重,尾喷管已经越来越多的采用重量轻、强度大、耐高温性能在500℃以上的阻燃钛合金材料。美国自行开发的600℃级Ti-V-Cr系阻燃钛合金Alloy-C,已经运用在 F119发动机的尾喷管,强大的推力加上轻质的钛合金大量运用,让这款发动机的推重比达到了10以上,成为了F22战斗机的标配动力!
我国航空高温合金材料经过五十年代仿制苏联,六七十年代在内外封锁中自力更生,再到新时期的大力追赶,目前虽然已经达到一个较高水平,但是与国外仍旧差距不小。航空发动机工作温度每提高100℃,推力就将增加20%以上,要制造出更高性能的航空发动机,我们就必须在基础材料研究、结晶冶金工艺、粉末冶金工艺上继续努力完善和提高。随着涡扇15和涡扇20等高性能发动机的不断涌现,相信我国高温合金材料必将在一次次的前进中最终登上世界之巅!


军武吐槽君


航空发动机是典型的热机,通过燃烧化学燃料,高温气体做功将化学能转化为动能,航空发动机制造难点就是设计生产耐高温、高强度零部件。在发动机内部,按照工作环境温度由高到底排序,分别是燃烧室、涡轮、涡轮后、喷口排气温度与压气机温度。涡扇-15发动机的燃烧室温度接近2000度,排气温度大概只有600度左右。发动机喷火是因为未完全燃烧的富余燃料在大气中燃烧产生的火焰,外部的火焰对发动机的影响并不大,不必担心发动机被熔化。

燃烧室是空腔结构,部件固定、受力均匀,承受高温能力较强。反而温度相对低100多度的涡轮,是对发动机制造技术与使用材料的终极考验。比如涡扇-15发动机,涡轮叶片是单晶体镍基合金材料(1),熔点达到1150度左右。单晶体指由液态一次性结晶成一片结晶体,比如一片雪花。在相同材料分子结构中,单晶体的强度最大,耐温能力最强。

涡扇-15发动机

然而,由于涡轮进口温度接近2000度,1150度熔点温度仍然远远不能满足要求。为此,工程师在单晶体叶片上钻孔,在叶片内部形成空腔,引入外部冷空气或者滑油进行冷却,大概能使叶片温度降低500度左右。

镂空的涡轮叶片

叶片冷却技术(2)使得涡轮叶片能够抗住1650度左右的高温,但与2000度的环境温度还有差距。于是,工程师又采用了热障涂层技术(3)进行加持,涡扇-15发动机就采用了多元稀土氧化物掺杂的双层纳米氧化锆陶瓷进行隔热,让涡轮叶片温度比环境温度再降低200至300多度,涡轮叶片耐温性基本达到了1900至2000度。要知道,发动机工作温度每提高100度,发动机推力就增加24%,所以说涡轮叶片耐温性决定了发动机的先进性。

上文加粗三项为涡轮耐高温技术,虽然尾喷口的温度要比涡轮温度少1000度左右,但温度仍然不低,大概有900度左右。尾喷口同样采用耐高温设计,双层筒状结构,内筒同样采用了耐高温陶瓷材料。如上图,白色的隔热材料。


红龙军团长


其实战斗机在巡航状态下飞行尾喷口是看不到火焰的,只有在接通加力时才有明亮的火焰,那是因为加力燃烧室位于发动机涡轮后,尾喷管内,喷口前,接通加力时,向加力燃烧室喷入大量的雾化航空煤油,在涡流稳定器后猛烈地燃烧,高温燃气向后排出形成火焰的缘故!加力关闭火焰就没有了。主燃烧室内火焰是传不到涡轮后的,而燃气经过涡轮后温度只有几百度,如果是涡扇发动机温度更低,只有红外特性,是没有可见光的。


每周必看


尾喷管使用了高强度耐热铼钛合金,最高可承受3000摄氏度的高温,而战机没有开启加力飞行的情况下尾焰温度只有1200摄氏度,在开启加力飞行时喷出的尾焰温度也只有2000摄氏度,完全在尾喷管的可承受范围之内


分享到:


相關文章: