小米穀物的抗氧化和抗糖尿病潛力

原創 MNT 醫學營養MNT 1周前


小米穀物的抗氧化和抗糖尿病潛力

圖1. 本研究中使用的穀粒圖片

全穀粒品種由韓國農村發展局(KRDA)提供。清潔小米粒並使用電動磨機將其粉碎成細粉,並通過40號篩網進行篩分。在提取之前,將樣品存儲在-20°C下。


01


研究評估了韓國栽培的四個小米品種的體外潛在抗氧化和抗糖尿病特性。使用2,2'-疊氮基雙(3-乙基苯並噻唑啉-6-磺酸)二銨鹽(ABTS +)和2,2'-二苯基-1-吡啶並肼基(DPPH)自由基清除試驗,然後進行α-葡萄糖苷酶,α-澱粉酶和高級糖基化終產物(AGEs)形成抑制試驗。

遊離餾分中各成分的含量表

成分

含 量

總酚

107.8-136.4 mg FAE / 100 g

類黃酮

101.3-115.8 mg CE/ 100 g

縮合單寧

17.65-59.54 mg CE/ 100 g


意大利手指小米的總酚含量最高(136.4 mg FAE / 100 g)和黃酮含量最高(115.8 mg CE / 100 g)。


02


Barnyard 和意大利手指小米顯示出最高的DPPH(IC50=359.6 µg / mL和436.25 µg / mL)和ABTS自由基清除活性(IC50=362.40 µg / mL和381.65 µg / mL)。


小米穀物的抗氧化和抗糖尿病潛力

圖2. 小米品種乙醇提取物的抗氧化能力。

(A)2,2'-二苯基-1-吡啶並肼基(DPPH)自由基清除活性的IC 50值;(B) 2,2′-疊氮基雙(3-乙基苯並噻唑啉-6-磺酸)二銨鹽(ABTS)自由基清除活性的IC 50值。FIM,手指意大利小米;BM,bar穀子;M,小米;IM,意大利小米。不同的小寫字母表示顯著差異(p <0.05)。


03


意大利手指小米也顯著表現出較低的IC50為α-葡糖苷酶的抑制百分比(18.07µg/ml)和α-澱粉酶(10.56µ g/ml),與阿卡波糖相比(IC50= 59.34µg/ml和27.73µg/ml),與氨基胍(AG)(52.30 µg / mL)相比,分別形成了AGEs(33.68 µg / mL)和AGEs(33.68 µg / mL)。

小米穀物的抗氧化和抗糖尿病潛力

圖3. 小米品種乙醇提取物中的消化酶和高級糖基化終產物的抑制活性。(A)α-葡萄糖苷酶抑制活性的IC 50值;(B)α-澱粉酶抑制活性的IC 50值;(C)和晚期糖基化終產物(AGEs)的抑制活性IC 50值。FIM,手指意大利小米;BM,bar穀子;M,小米;IM,意大利小米。不同的小寫字母表示顯著差異(p <0.05)。


04


本研究為選定的韓國小米穀物的抗氧化和抗糖尿病潛力提供了新的見解。在意大利手指小米中鑑定出的所有八種酚類化合物均為類黃酮,其中黃烷醇為主要亞類。小米黃酮類化合物在2型糖尿病的預防和控制中起著重要作用,與常用藥物阿卡波糖相比,這些小米品種的可溶性酚類化合物(主要為類黃酮)顯示出對α-葡萄糖苷酶和α-澱粉酶活性的有效抑制作用,表明它們具有通過延遲碳水化合物消化減少餐後高血糖的潛力。此外,酚類成分(主要是類黃酮)顯示出強效的抗糖化特性,表明它們具有減少AGEs有害後果的潛力。需要對動物模型進行進一步的研究以確認這些穀粒的抗糖尿病能力。意大利手指小米有潛力被開發為功能性食品。


關鍵詞


穀粒 ; 抗氧化活性 ; 酚類化合物 ; 類黃酮 ; 消化酶抑制劑 ; 高級糖化終產物 ; 功能食品


資料來源


小米穀物的抗氧化和抗糖尿病潛力


Antioxidants 2020, 9(3), 254;

ID:doi.org/10.3390/antiox9030254

發表時間:2020年3月20日

參考文獻


1. DeFronzo, R.A.; Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes.

Diabetes Care 2009, 32, S157–S163. [CrossRef] [PubMed]

2. Kang, G.G.; Francis, N.; Hill, R.; Waters, D.; Blanchard, C.; Santhakumar, A.B. Dietary Polyphenols and Gene

Expression in Molecular Pathways Associated with Type 2 Diabetes Mellitus: A Review. Int. J. Mol. 2020 , 21,

140. [CrossRef] [PubMed]

3. Gallagher, E.J.; LeRoith, D.; Karnieli, E. Insulin resistance in obesity as the underlying cause for the metabolic

syndrome. Mt. Sinai J. Med. 2010, 77, 511–523. [CrossRef] [PubMed]

4. Migdal, C.; Serres, M. Reactive oxygen species and oxidative stress. MS Med. Sci. 2011, 27, 405–412.

5. Chang,A.M.; Smith,M.J.; Bloem,C.J.; Galecki,A.T.; Halter,J.B.Effectofloweringpostprandialhyperglycemia

on insulin secretion in older people with impaired glucose tolerance. Am. J. Physiol. Endocrinol. 2004 , 287,

E906–E911. [CrossRef]

6. Vinson, J.A.; Howard, T.B., III. Inhibition of protein glycation and advanced glycation end products by

ascorbic acid and other vitamins and nutrients. J. Nutr. Biochem. 1996, 7, 659–663. [CrossRef]

7. Pradeep, P.; Sreerama, Y.N. Soluble and bound phenolics of two different millet genera and their milled

fractions: Comparative evaluation of antioxidant properties and inhibitory effects on starch hydrolysing

enzyme activities. J. Funct. Foods 2017, 35, 682–693. [CrossRef]

8. Pradeep, P.; Sreerama, Y.N. Phenolic antioxidants of foxtail and little millet cultivars and their inhibitory

effects on α-amylase and α-glucosidase activities. Food Chem. 2018, 247, 46–55. [CrossRef]

9. Sekhon-Loodu, S.; Rupasinghe, H. Evaluation of antioxidant, antidiabetic and antiobesity potential of

selected traditional medicinal plants. Front. Nutr. 2019, 6, 53. [CrossRef]

10. Adinortey, M.B.; Agbeko, R.; Boison, D.; Ekloh, W.; Kuatsienu, L.E.; Biney, E.E.; Affum, O.O.; Kwarteng, J.;

Nyarko, A.K. Phytomedicines used for diabetes mellitus in Ghana: A systematic search and review of

preclinical and clinical evidence. Evid. Based Complement. Alternat. Med. 2019, 2019. [CrossRef]

11. Chandrasekara, A.; Shahidi, F. Content of insoluble bound phenolics in millets and their contribution to

antioxidant capacity. J. Agric. Food Chem. 2010, 58, 6706–6714. [CrossRef] [PubMed]

12. Bandyopadhyay, T.; Muthamilarasan, M.; Prasad, M. Millets for next generation climate-smart agriculture.

Front. Plant Sci. 2017, 8, 1266. [CrossRef] [PubMed]

13. Shahidi, F.; Chandrasekara, A. Millet grain phenolics and their role in disease risk reduction and health

promotion: A review. J. Funct. Foods. 2013, 5, 570–581. [CrossRef]

14. Chandrasekara, A.; Shahidi, F. Antiproliferative potential and DNA scission inhibitory activity of phenolics

from whole millet grains. J. Funct. Foods. 2011, 3, 159–170. [CrossRef]

15. Vadivoo, A.S.; Joseph, R.; Ganesan, N.M. Genetic variability and diversity for protein and calcium contents

in finger millet (Eleusine coracana (L.) Gaertn) in relation to grain color. Plant Food Hum. Nutri. 1998 , 52,

353–364. [CrossRef]

16. Upadhyaya, N.; Nosenko, V.; Miškovi´ c, Z.; Hou, L.-J.; Ivlev, A.; Morfill, G. A full account of compressional

wave in 2D strongly coupled complex (dusty) plasmas: Theory, experiment and numerical simulation. EPL.

2011, 94, 65001. [CrossRef]

17. Van Hung, P. Phenolic compounds of cereals and their antioxidant capacity. Crit. Rev. Food Sci. Nutr. 2016 ,

56, 25–35. [CrossRef]

18. Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant

tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875. [CrossRef]

19. Apea-Bah, F.B.; Minnaar, A.; Bester, M.J.; Duodu, K.G. Sorghum–cowpea composite porridge as a functional

food, Part II: Antioxidant properties as affected by simulated in vitro gastrointestinal digestion. Food Chem.

2016, 197, 307–315. [CrossRef]

20. Price, M.L.; Van Scoyoc, S.; Butler, L.G. A critical evaluation of the vanillin reaction as an assay for tannin in

sorghum grain. J. Agric. Food Chem. 1978, 26, 1214–1218. [CrossRef]

21. Li, W.; Pickard, M.D.; Beta, T. Effect of thermal processing on antioxidant properties of purple wheat bran.

Food Chem. 2007, 104, 1080–1086. [CrossRef]

22. Xiang, J.; Apea-Bah, F.B.; Ndolo, V.U.; Katundu, M.C.; Beta, T. Profile of phenolic compounds and antioxidant

activity of finger millet varieties. Food Chem. 2019, 275, 361–368. [CrossRef] [PubMed]

23. Okarter, N.; Liu, C.-S.; Sorrells, M.E.; Liu, R.H. Phytochemical content and antioxidant activity of six diverse

varieties of whole wheat. Food Chem. 2010, 119, 249–257. [CrossRef]

24. Chandrasekara, A.; Shahidi, F. Determination of antioxidant activity in free and hydrolyzed fractions of

millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J. Funct. Foods 2011 , 3,

144–158. [CrossRef]

25. Pradeep, P.; Sreerama, Y.N. Impact of processing on the phenolic profiles of small millets: Evaluation of their

antioxidant and enzyme inhibitory properties associated with hyperglycemia. Food Chem. 2015 , 169, 455–463.

[CrossRef]

26. Hyun, T.K.; Kim, H.-C.; Ko, Y.-J.; Kim, J.-S. Antioxidant, α -glucosidase inhibitory and anti-inflammatory

effects of aerial parts extract from Korean crowberry (Empetrum nigrum var. japonicum). Saudi J. Biol. Sci.

2016, 23, 181–188. [CrossRef]

27. Lacroix, I.M.; Li-Chan, E.C. Overview of food products and dietary constituents with antidiabetic properties

and their putative mechanisms of action: A natural approach to complement pharmacotherapy in the

management of diabetes. Mol. Nutri. Food Res. 2014, 58, 61–78. [CrossRef]

28. Baldea, L.A.N.; Martineau, L.C.; Benhaddou-Andaloussi, A.; Arnason, J.T.; L é vy, É .; Haddad, P.S. Inhibition

of intestinal glucose absorption by anti-diabetic medicinal plants derived from the James Bay Cree traditional

pharmacopeia. J. Ethnopharmacol. 2010, 132, 473–482. [CrossRef]

29. Wang, H.; Liu, T.; Huang, D. Starch hydrolase inhibitors from edible plants. In Advances in Food and Nutrition

Research; Elsevier: Amsterdam, The Netherlands, 2013; Volume 70, pp. 103–136.

30. Lim, J.; Zhang, X.; Ferruzzi, M.G.; Hamaker, B.R. Starch digested product analysis by HPAEC reveals

structural specificity of flavonoids in the inhibition of mammalian α -amylase and α -glucosidases. Food Chem.

2019, 288, 413–421. [CrossRef] [PubMed]

31. Hua, F.; Zhou, P.; Wu, H.-Y.; Chu, G.-X.; Xie, Z.-W.; Bao, G.-H. Inhibition of α -glucosidase and α -amylase by

flavonoid glycosides from Lu’an GuaPian tea: Molecular docking and interaction mechanism. Food Funct.

2018, 9, 4173–4183. [CrossRef]

32. Wu, L.; Liu, Y.; Qin, Y.; Wang, L.; Wu, Z. HPLC-ESI-qTOF-MS/MS characterization, antioxidant activities

and inhibitory ability of digestive enzymes with molecular docking analysis of various parts of raspberry

(Rubus ideaus L.). Antioxidants 2019, 8, 274. [CrossRef]

33. Zhang, X.; Jia, Y.; Ma, Y.; Cheng, G.; Cai, S. Phenolic composition, antioxidant properties, and inhibition

toward digestive enzymes with molecular docking analysis of different fractions from Prinsepia utilis royle

fruits. Molecules 2018, 23, 3373. [CrossRef] [PubMed]

34. Rojas,A.; Morales,M.; Gonzalez,I.; Araya,P.InhibitionofRAGEaxissignaling: Apharmacologicalchallenge.

Curr. Drug Targets 2019, 20, 340–346. [CrossRef] [PubMed]

35. Rowan, S.; Bejarano, E.; Taylor, A. Mechanistic targeting of advanced glycation end-products in age-related

diseases. Biochim. Biophys. Acta. Mol. Basis Dis. 2018, 1864, 3631–3643. [CrossRef] [PubMed]

36. Martini, S.; Conte, A.; Bottazzi, S.; Tagliazucchi, D. Mediterranean diet vegetable foods protect meat lipids

from oxidation during in vitro gastro-intestinal digestion. Int. J. Food Sci. Nutr. 2019, 1–16. [CrossRef]

37. Zhou, Q.; Gong, J.; Wang, M. Phloretin and its methylglyoxal adduct: Implications against advanced

glycation end products-induced inflammation in endothelial cells. Food Chem. Toxicol. 2019 , 129, 291–300.

[CrossRef]

38. Yılmaz, Z.; Kalaz, E.B.; Aydın, A.F.; Olgaç, V.; Do˘ gru-Abbaso˘ glu, S.; Uysal, M.; Koçak-Toker, N. The effect of

resveratrol on glycation and oxidation products in plasma and liver of chronic methylglyoxal-treated rats.

Pharmacol. Rep. 2018, 70, 584–590. [CrossRef]

39. Yeh, W.-J.; Hsia, S.-M.; Lee, W.-H.; Wu, C.-H. Polyphenols with antiglycation activity and mechanisms of

action: A review of recent findings. J. Food Drug Anal. 2017, 25, 84–92. [CrossRef]

40. Crasc ì ,L.; Lauro,M.R.; Puglisi,G.; Panico,A.Naturalantioxidantpolyphenolsoninflammationmanagement:

Anti-glycation activity vs metalloproteinases inhibition. Crit. Rev. Food Sci. Nutri. 2018 , 58, 893–904.

[CrossRef]

41. Harris, C.S.; Cuerrier, A.; Lamont, E.; Haddad, P.S.; Arnason, J.T.; Bennett, S.A.; Johns, T. Investigating

wild berries as a dietary approach to reducing the formation of advanced glycation endproducts: Chemical

correlates of in vitro antiglycation activity. Plant Food Hum. Nutr. 2014, 69, 71–77. [CrossRef]

42. Gonz á lez, I.; Morales, M.A.; Rojas, A. Polyphenols and AGEs/RAGE axis. Trends and challenges. Food Res.

Int. 2019, 108843. [CrossRef]

43. Phenol-Explorer: Comprehensive Database on Polyphenol Content in Foods. Available online: https:

//phenol-explorer.eu/ (accessed on 6 February 2020).

44. Watanabe, M. Antioxidative Phenolic Compounds from Japanese Barnyard Millet (Echinochloa utilis) Grains.

J. Agric. Food Chem. 1999, 47, 4500–4505. [CrossRef] [PubMed]

45. Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Catechin Treatment Ameliorates Diabetes and

Its Complications in Streptozotocin-Induced Diabetic Rats. Dose-Response 2017 , 15, 1559325817691158.

[CrossRef] [PubMed]

46. Ueda-Wakagi, M.; Nagayasu, H.; Yamashita, Y.; Ashida, H. Green Tea Ameliorates Hyperglycemia by

Promoting the Translocation of Glucose Transporter 4 in the Skeletal Muscle of Diabetic Rodents. Int. J. Mol.

Sci. 2019, 20, 2436. [CrossRef] [PubMed]


分享到:


相關文章: